Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
                                  NCBI home page
Search in PMCSearch
As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.
Learn more:PMC Disclaimer | PMC Copyright Notice
Elsevier - PMC COVID-19 Collection logo

Coronavirus immunogens

Linda J Saif1,
1Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OHUSA

Correspondence to: L.J. Saif, Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA.

Accepted 1993 Jul 14; Issue date 1993 Nov.

Copyright © 1993 Published by Elsevier B.V.

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

PMCID: PMC7117163  PMID:8116187

Abstract

Coronaviruses (CV) infect a variety of livestock, poultry and companion animals. They belong to at least five antigenic groups. CV cause localized infections of the respiratory and/or intestinal tracts, with the exception of feline infectious peritonitis virus (FIVP) and hemagglutinating encephalomyelitis (HEV) which cause systemic infections. The enteropathogenic CV infect the villous enterocytes resulting in villous atrophy leading to malabsorptive diarrhea. Several CV (bovine CV-BCV, porcine respiratory CV-PRCV, infectious bronchitis virus-IBV) cause respiratory disease.

Current evidence indicates that protection against enteric and respiratory CV infections is mediated by passive or active immunity at the primary site of CV replication. Maternal vaccination approaches to induce passive immunity include the use of inactivated and modified live viral vaccines. Modified live viruses and a Ts mutant CV (FIPV) are also used as oral or intranasal vaccines to induce active mucosal immunity. The success of these vaccines in the field is often compromised by a number of potential problems.

Coronaviruses are spherical, enveloped viruses, ranging from 80–160 nm in diameter and containing a positive-stranded RNA genome. They possess prominent surface spikes and some species display a fringe of smaller surface projections believed to be the hemagglutinin (HE). Coronaviruses possess 3 to 4 structural proteins: the spike (S) glycoprotein (150–200 kDa), the integral membrane glycoprotein (M; 20–30 kDa) and the nucleocapsid phosphoprotein (N; 43–50 kDa). A subset of CV (BCV, HEV, turkey CV) possess a third glycoprotein on the virion surface, the HE (60–65 kDa). These proteins can be quantitated using pooled monoclonal antibodies (mAb) to distinct epitopes of each protein in ELISA.

Most research has focused on the S protein as a candidate antigen for CV vaccines since it induces virus neutralizing (VN) antibodies. However the HE protein stimulates the production of VN and HE inhibiting antibodies and the M protein induces antibodies that neutralize virus in the presence of complement. Attempts to correlate in vitro VN antibody activity with in vivo protection have shown that the passive transfer of VN mAb to the S or HE protein conferred passive protection against CV challenge in some studies, but not others. Additional research has implicated a possible role for other CV proteins in immunity. Studies of mAb to the M protein of transmissible gastroenteritis (TGEV) have provided evidence for a direct role of the M protein in the induction of αIFN by porcine blood leukocytes. The potential significance of this phenomenon to immunity to TGEV is unclear. Similarly, studies of IBV have suggested that determinants recognized by T cells reside on the N protein and these determinants may be shared among heterologous strains of IBV, resulting in the induction of cross-protection. Thus epitopes on the N protein may be important for induction of cell mediated immunity (CMI). CMI may play an important role in protection of cats against FIPV, since induction of circulating antibodies to the S protein of FIPV contributes to disease pathogenesis by the induction of immune complexes and antibody dependent enhancement of the infectivity of FIPV for macrophages.

An increased understanding of antibody and CMI responses following natural CV infections in animals is needed to identify the antigens and epitopes that induce protective immune responses. The expression of CV structural protein genes in various vectors will provide the recombinant proteins needed for future immunogenicity studies in the host species. Furthermore, live rDNA vectors that replicate in the gut and express coronavirus genes may provide a new generation of coronavirus vaccines.

References

  1. Andre H., Hermans J.F. Influence of repeated administration of antigen by the oral route on specific antibody-producing cells in the mouse spleen. Digestion. 1973;9:166–175. doi: 10.1159/000197442. [DOI] [PubMed] [Google Scholar]
  2. Bernard S., Bottreau E., Aynaud J.M., Have P., Szymansky J. Natural infection with the porcine respiratory coronavirus induces protective lactogenic immunity against transmissible gastroenteritis. Vet. Microbiol. 1989;21:1–8. doi: 10.1016/0378-1135(89)90013-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boots A.M.H., Kusters J.G., Van der Zeijst B.A.M., Hensen E.J. The nucleocapsid protein of IBV comprises immunodominant determinants recognized by T-cells. Adv. Exp. Med. Biol. 1990;276:189–200. doi: 10.1007/978-1-4684-5823-7_26. [DOI] [PubMed] [Google Scholar]
  4. Callebaut P., Correa I., Pensaert M. Antigenic differentiation between transmissible gastroenteritis virus of swine and a related porcine respiratory coronavirus. J. Gen. Virol. 1988;69:1725–1730. doi: 10.1099/0022-1317-69-7-1725. [DOI] [PubMed] [Google Scholar]
  5. Callebaut P., Cox E., Pensaert M., Van Deun K. Induction of milk IgA antibodies by porcine respiratory coronavirus infection. Adv. Exp. Med. Biol. 1990;276:421–428. doi: 10.1007/978-1-4684-5823-7_58. [DOI] [PubMed] [Google Scholar]
  6. Cavenagh D., Darbyshire J.H., Davis P., Peters R.W. Induction of humoral neutralizing and haemagglutination inhibiting antibody by the spike protein of avian infectious bronchitis virus. Avian Pathol. 1984;13:573–583. doi: 10.1080/03079458408418556. [DOI] [PubMed] [Google Scholar]
  7. Chanock R.M., Murphy B.R., Collins P.L., Coelingh K.V.W., Olmsted R.A., Snyder M.H., Spriggs M.K., Prince G.A., Moss B., Flores J., Gorziglia M., Kapikian A.Z. Live viral vaccines for respiratory and enteric tract diseases. Vaccine. 1988;6:129–133. doi: 10.1016/s0264-410x(88)80014-8. [DOI] [PubMed] [Google Scholar]
  8. Charley B., Laude H. Induction of alpha interferon by transmissible gastroenteritis coronavirus: role of transmembrane glycoprotein E1. J. Virol. 1988;62:8–11. doi: 10.1128/jvi.62.1.8-11.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clements J.D., Lyon F.L., Lowe K.L., Farrand A.L., ElMorshidy S. Oral immunization of mice with attenuated Salmonella enteritidis containing a recombinant plasmid which codes for production of the B subunit of heat-labile Escherichia coli exterotoxin. Infect. Immun. 1986;53:685–695. doi: 10.1128/iai.53.3.685-692.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Correa I., Jimenez G., Sune C., Bullido M.J., Enjuanes L. Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Res. 1988;10:77–94. doi: 10.1016/0168-1702(88)90059-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cox E., Pensaert M., Hooyberghs J., Van Deun K. Sites of replication of a porcine respiratory coronavirus in 5-week-old pigs with or without maternal antibodies. Adv. Exp. Med. Biol. 1990;276:429–434. doi: 10.1007/978-1-4684-5823-7_59. [DOI] [PubMed] [Google Scholar]
  12. Curtiss R., Kelly S.M. Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic amp receptor protein are avirulent and immunogenic. Infect. Immun. 1987;55:3035. doi: 10.1128/iai.55.12.3035-3043.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Delmas B., Rasschaert D., Godet M., Gelfi J., Laude H. Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoprotein Sp. J. Gen. Virol. 1990;71:1313–1323. doi: 10.1099/0022-1317-71-6-1313. [DOI] [PubMed] [Google Scholar]
  14. Deregt D., Gifford G.A., Khalid-Ijaz M., Watts T.C., Gilchrist J.E., Haines D.M., Babiuk L.A. Monoclonal antibodies to bovine coronavirus glycoproteins E2 and E3: demonstration of in vivo virus-neutralizing activity. J. Gen. Virol. 1989;70:993–998. doi: 10.1099/0022-1317-70-4-993. [DOI] [PubMed] [Google Scholar]
  15. Enjuanes L., Gebauer F., Correa I., Bullido M.J., Sune C., Smerdou C., Sanchez C., Lenstra J.A., Posthumus W.P.A., Meloen R.H. Localization of antigenic sites of the S-glycoprotein of transmissible gastroenteritis and their conservation in coronaviruses. Adv. Exp. Med. Biol. 1990;276:159–172. doi: 10.1007/978-1-4684-5823-7_23. [DOI] [PubMed] [Google Scholar]
  16. Garwes D.J., Lucas M.H., Higgins D.A., Pike B.V., Cartwright S.F. Antigenicity of structural components from porcine transmissible gastroenteritis virus. Vet. Microbiol. 1978/1979;3:179–190. [Google Scholar]
  17. Gerber J.D., Ingersoll J.D., Gast A.M., Christianson K.K., Selzer N.L., Landon R.M., Pfeiffer N.E., Sharpee R.L., Beckenhauer W.H. Protection against feline infectious peritonitis by intranasal inoculation of a temperature-sensitive FIPV vaccine. Vaccine. 1990;8:542–563. doi: 10.1016/0264-410X(90)90004-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Godet M., Rasschaert D., Laude H. Processing and antigenicity of entire and anchor-free spike glycoprotein S of coronavirus TGEV expressed by recombinant baculovirus. Virol. 1991;185:732–740. doi: 10.1016/0042-6822(91)90544-L. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Heckert R.A., Saif L.J., Agnes A.G. A longitudinal study of bovine coronavirus enteric and respiratory infections in dairy calves in two herds in Ohio. Vet. Microbiol. 1990;22:187–201. doi: 10.1016/0378-1135(90)90106-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Heckert R.A., Saif L.J., Hoblet K.H., Agnes A.G. Epidemiologic factors and isotype antibody responses in serum and mucosal secretions of dairy calves with bovine coronavirus respiratory tract and enteric tract infections. Am. J. Vet. Res. 1991;52:845–851. [PubMed] [Google Scholar]
  21. Hooper R.E., Haelterman E.O. Concepts of pathogenesis and passive immunity in transmissible gastroenteritis in swine . Am. Vet. Med. Assoc. 1966;149:1580–1586. [Google Scholar]
  22. Horzinek M.C., Lutz H., Petersen N.C. Antigenic relationships among homologous structural polypeptides of porcine, feline and canine coronaviruses. Infect. Immun. 1982;37:1148–1155. doi: 10.1128/iai.37.3.1148-1155.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hu S., Bruszewski J., Boone T., Smalling R., Brown J.K. Studies of TGE spike protein gp 195 expressed in E. coli and by a TGE-vaccina virus recombinant. In: Atassi M.Z., Bachrach H., editors. Immunobiology of Proteins and Peptides — III. Plenum Pub. Co; N.Y: 1985. pp. 63–82. [Google Scholar]
  24. Jones R.C., Ambali A.G. Re-excretion of an enterotropic infectious bronchitis virus by hens at point of lay after experimental infection at day old. Vet. Rec. 1987;120:617–620. doi: 10.1136/vr.120.26.617. [DOI] [PubMed] [Google Scholar]
  25. Kimman T.G., Zimmer G.M., Westerbrink F., Mars J., Van Leeuwen E. Epidomiological study of bovine respiratory syncytial virus infections in calves: influence of maternal antibodies on the outcome of disease. Vet. Rec. 1988;123:104–109. doi: 10.1136/vr.123.4.104. [DOI] [PubMed] [Google Scholar]
  26. King D.J., Cavanagh D. Infectious bronchitis. In: Calnek B.W., editor. Diseases of Poultry. 9th ed. Iowa State Univ. Press; Ames, Iowa: 1991. pp. 471–484. [Google Scholar]
  27. Kusters J.G., Niesters H.G.M., Bleumink-Pluym N.M.C., Davelaar F.G., Horzinek M.C., Van der Zeist B.A.M. Molecular epidemiology of infectious bronchitis virus in the Netherlands. J. Gen. Virol. 1987;68:343–352. doi: 10.1099/0022-1317-68-2-343. [DOI] [PubMed] [Google Scholar]
  28. Laude H. Mapping epitopes on coronavirus glycoproteins. Adv. Exp. Med. Biol. 1990;276:139–142. doi: 10.1007/978-1-4684-5823-7_20. [DOI] [PubMed] [Google Scholar]
  29. Laude H., Gelfi J., Lavenant, Charley B. Single amino acid changes in the viral glycoprotein M affect induction of alpha interferon by the coronavirus transmissible gastroenteritis virus. J. Virol. 1992;66:743–749. doi: 10.1128/jvi.66.2.743-749.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mockett A.P.A., Cavanagh D., Brown T.D.K. Monoclonal antibodies to the S1 spike and membrane proteins of avian infectious bronchitis coronavirus strain Massachussetts M41. J. Gen. Virol. 1984;65:2281–2286. doi: 10.1099/0022-1317-65-12-2281. [DOI] [PubMed] [Google Scholar]
  31. Mostl K. Coronaviridae, pathogenic and clinical aspects: an update. Comp. Immun. Microbiol. Infect. Dis. 1990;13:169–180. doi: 10.1016/0147-9571(90)90085-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Olsen C.W., Corapi W.V., Ngichabe C.K., Baines J.D., Scott F.W. Monoclonal antibodies to the spike protein of feline infectious peritonitis virus mediate antibody-dependent enhancement of infection of feline macrophages. J. Virol. 1992;66:956–965. doi: 10.1128/jvi.66.2.956-965.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Parker M.D., Cox G.J., Deregt D., Fitzpatrick D.R., Babiuk L.A. Cloning and in vitro expression of the gene for the E3 haemagglutinin of bovine coronavirus. J. Gen. Virol. 1989;70:155–164. doi: 10.1099/0022-1317-70-1-155. [DOI] [PubMed] [Google Scholar]
  34. Parker M.D., Yoo P., Cox G.J., Babiuk L.A. Primary structure of the S peplomer gene of bovine coronavirus and surface expression in insect cells. J. Gen. Virol. 1990;71:263–270. doi: 10.1099/0022-1317-71-2-263. [DOI] [PubMed] [Google Scholar]
  35. Paton D.J., Brown I.H. Sows infected in pregnancy with porcine respiratory coronavirus show no evidence of protecting their suckling piglets against transmissible gastroenteritis. 1990;14:329–337. doi: 10.1007/BF00350714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pederson N.C. Feline infectious peritonitis virus. In: Appel M.J., editor. Virus infections of carnivores. Elsevier; N.Y: 1987. p. 267. [Google Scholar]
  37. Pederson N.C. Virologic and immunologic aspects of feline infectious peritonitis virus infection. Adv. Exp. Med. Biol. 1987;218:529–550. doi: 10.1007/978-1-4684-1280-2_69. [DOI] [PubMed] [Google Scholar]
  38. Pensaert M.B., Cox E. Porcine respiratory coronavirus related to transmissible gastroenteritis virus. Agri-Practice. 1989;10:17–21. doi: 10.1016/S0034-5288(18)30984-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pulford D.J., Britton P., Page K.W., Garwes D.J. Expression of TGEV structural genes in virus vectors. Adv. Exp. Med. Biol. 1990;276:223–232. doi: 10.1007/978-1-4684-5823-7_31. [DOI] [PubMed] [Google Scholar]
  40. Rubin D., Weiner H.L., Fields B.N., Green M.I. Immunologic tolerance after oral administration of reovirus: requirement for two viral gene products for tolerance induction. J. Immunol. 1981;127:1697–1701. [PubMed] [Google Scholar]
  41. Saif L.J. A review of evidence implicating bovine coronavirus in the etiology of winter dysentery in cows: an enigma resolved? Cornell Vet. 1990;80:303–311. [PubMed] [Google Scholar]
  42. Saif L.J., Heckert R.A. Enteric coronaviruses. In: Saif L.J., Theil K.W., editors. Viral Diarrheas of Man and Animals. CRC Press; Boca Raton, Florida: 1990. pp. 85–252. [Google Scholar]
  43. Saif L.J., Jackwood D.J. Enteric virus vaccines: Theoretical considerations, current status and future approaches. In: Saif L.J., Theil K.W., editors. Viral Diarrheas of Man and Animals. CRC Press; Boca Raton, Florida: 1990. pp. 313–329. [Google Scholar]
  44. Saif L.J., Wesley R. Transmissible gastroenteritis virus. In: Leman A.D., editor. Diseases of Swine. 7th Ed. Iowa State Univ. Press; Ames, Iowa: 1992. pp. 362–386. [Google Scholar]
  45. Saif L.J., Redman D.R., Theil K.W. Experimental coronavirus infections in calves: Viral replication in the respiratory and intestinal tracts. Am. J. Vet. Res. 1986;47:1426–1432. [PubMed] [Google Scholar]
  46. Scott F.W. Immunization against feline coronaviruses. Adv. Exp. Med. Biol. 1987;218:569–576. doi: 10.1007/978-1-4684-1280-2_72. [DOI] [PubMed] [Google Scholar]
  47. Simkins R.A., Saif L.J., Weilnau P.A. Epitope mapping and the detection of transmissible gastroenteritis viral proteins in cell culture using biotinylated monoclonal antibodies in a fixed-cell ELISA. Arch. Virol. 1989;107:179–190. doi: 10.1007/BF01317915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Simkins R.A., Weilnau P.A., Bias J., Saif L.J. Antigenic variation among transmissible gastroenteritis virus (TGEV) and porcine respiratory coronavirus strains detected with monoclonal antibodies to the S protein of TGEV. Am. J. Vet. Res. 1992;53:1253–1258. [PubMed] [Google Scholar]
  49. Spaan W.J.M. Progress towards a coronavirus recombinant DNA vaccine. Adv. Exp. Biol Med. 1990;276:201–203. doi: 10.1007/978-1-4684-5823-7_27. [DOI] [PubMed] [Google Scholar]
  50. Spaan W., Cavanagh D., Horzinek M.C. Coronaviruses: Structure and genome expression. J. Gen. Virol. 1988;69:2939–2952. doi: 10.1099/0022-1317-69-12-2939. [DOI] [PubMed] [Google Scholar]
  51. Stoddart M.E., Gaskell R.M., Harbour D.A., Pearson G.R. The sites of early viral replication in feline infectious peritonitis. Vet. Microbiol. 1988;18:259–271. doi: 10.1016/0378-1135(88)90092-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Stoddart C.A., Scott F.W. Intrinsic resistance of feline peritoneal macrophages correlates with in vivo virulence. J. Virol. 1989;63:436–440. doi: 10.1128/jvi.63.1.436-440.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Tomley F.M., Mockett A.P.A., Boursnell M.E.G., Binns M.M., Cook J.K.A., Brown T.D.K., Smith G.L. Expression of the IBV spike protein by recombinant vaccinia virus and induction of neutralizing in vacinated mice. J. Gen. Virol. 1987;68:2291–2298. doi: 10.1099/0022-1317-68-9-2291. [DOI] [PubMed] [Google Scholar]
  54. Van Cott J.L., Brim T.A., Saif L.J. Antibody-secreting cells to transmissible gastroenteritis virus and porcine respiratory coronavirus in gut- and bronchus-associated lymphoid tissues of neonatal pigs. J. Immunol. 1993;150:3990–4000. [PubMed] [Google Scholar]
  55. Van Nieustadt A.P., Zetstra T., Boonstra J. Infection with porcine respiratory coronavirus does not fully protect pigs against intestinal transmissible gastroenteritis virus. Vet. Rec. 1989;125:58–60. doi: 10.1136/vr.125.3.58. [DOI] [PubMed] [Google Scholar]
  56. Vautherot J.F., Madelaine M.F., Laforte J. Topological and functional analysis of epitopes on the S (E2) and HE (E3) glycoproteins of bovine enteric coronavirus. Adv. Exp. Med. Biol. 1990;276:173–180. doi: 10.1007/978-1-4684-5823-7_24. [DOI] [PubMed] [Google Scholar]
  57. Vennema H., deGroot R.J., Harbour D.A., Dalderup M., Gruffydd-Jones T., Horzinek M.C., Spaan W.J.M. Immunogenicity of recombinant feline infectious peritonitis virus spike protein in mice and kittens. Adv. Exp. Med. Biol. 1990;276:217–222. doi: 10.1007/978-1-4684-5823-7_30. [DOI] [PubMed] [Google Scholar]
  58. Wege H., Siddell S., TerMeulen V. The biology and pathogenesis of coronaviruses. Curr. Top. Microbiol. Immunol. 1982;99:165–200. doi: 10.1007/978-3-642-68528-6_5. [DOI] [PubMed] [Google Scholar]
  59. Wesley R.D., Woods R.D., Correa I., Enjuanes L. Lack of protection in vivo with neutralizing monoclonal antibodies to transmissible gastroenteritis virus. Vet. Microbiol. 1988;18:197–208. doi: 10.1016/0378-1135(88)90087-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Woods R.D., Wesley R.D., Kapke P.A. Neutralization of transmissible gastroenteritis virus by complement dependent monoclonal antibodies. Am. J. Vet. Res. 1988;49:300–304. [PubMed] [Google Scholar]
  61. Yoo D., Parker M.D., Babiuk L.A. The S2 subunit of the spike glycoprotein of bovine coronavirus mediates membrane fusion in insect cells. Virol. 1991;180:395–399. doi: 10.1016/0042-6822(91)90045-D. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Zhu X-L., Paul P.S., Vaughn E., Morales A. Characterization and reactivity of monoclonal antibodies to the Miller strain of transmissible gastroenteritis virus of swine. Amer. J. Vet. Res. 1990;51:232–238. [PubMed] [Google Scholar]

Articles from Veterinary Microbiology are provided here courtesy ofElsevier

ACTIONS

RESOURCES


[8]ページ先頭

©2009-2025 Movatter.jp