
Relationships between a Hyper-Rec Mutation (rem1) and Other Recombination and Repair Genes in Yeast
Robert E Malone
Merl F Hoekstra
Received 1983 May 15; Accepted 1984 Jan 18.
Abstract
Mutations in theREM1 gene ofSaccharomyces cerevisiae confer a semidominant hyper-recombination and hypermutable phenotype upon mitotic cells (Golin andEsposito 1977). These effects have not been observed in meiosis. We have examined the interactions ofrem1 mutations withrad6-1, rad50-1, rad52-1 or spo11-1 mutations in order to understand the basis of therem1 hyper-rec phenotype. Therad mutations have pleiotropic phenotypes;spo11 is only defective in sporulation and meiosis. TheRAD6, RAD50 and SPO11 genes are not required for spontaneous mitotic recombination; mutations in theRAD52 gene cause a general spontaneous mitotic Rec- phenotype. Mutations inRAD50, RAD52 orSPO11 eliminate meiotic recombination, and mutations inRAD6 prevent spore formation. Evidence for the involvement ofRAD6 in meiotic recombination is less clear. Mutations in all threeRAD genes confer sensitivity to X rays; theRAD6 gene is also required for UV damage repair. To test whether any of these functions might be involved in the hyper-rec phenotype conferred byrem1 mutations, double mutants were constructed. Double mutants ofrem1 spo11 were viable and demonstratedrem1 levels of mitotic recombination, suggesting that the normal meiotic recombination system is not involved in producing therem1 phenotype. The rem1 rad6 double mutant was also viable and hadrem1 levels of mitotic recombination. Neitherrem1 rad50 norrem1 rad52 double mutants were viable. This suggests thatrem1 causes its hyper-rec phenotype because it creates lesions in the DNA that are repaired using a recombination-repair system involvingRAD50 andRAD52.
Full Text
The Full Text of this article is available as aPDF (884.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Esposito M. S., Esposito R. E. The genetic control of sporulation in Saccharomyces. I. The isolation of temperature-sensitive sporulation-deficient mutants. Genetics. 1969 Jan;61(1):79–89. doi: 10.1093/genetics/61.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Game J. C., Zamb T. J., Braun R. J., Resnick M., Roth R. M. The Role of Radiation (rad) Genes in Meiotic Recombination in Yeast. Genetics. 1980 Jan;94(1):51–68. doi: 10.1093/genetics/94.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glickman B. W., Radman M. Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1063–1067. doi: 10.1073/pnas.77.2.1063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golin J. E., Esposito M. S. Evidence for joint genic control of spontaneous mutation and genetic recombination during mitosis in Saccharomyces. Mol Gen Genet. 1977 Jan 18;150(2):127–135. doi: 10.1007/BF00695392. [DOI] [PubMed] [Google Scholar]
- Malone R. E., Esposito R. E. The RAD52 gene is required for homothallic interconversion of mating types and spontaneous mitotic recombination in yeast. Proc Natl Acad Sci U S A. 1980 Jan;77(1):503–507. doi: 10.1073/pnas.77.1.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marinus M. G., Konrad E. B. Hyper-recombination in dam mutants of Escherichia coli K-12. Mol Gen Genet. 1976 Dec 22;149(3):273–277. doi: 10.1007/BF00268528. [DOI] [PubMed] [Google Scholar]
- Marinus M. G., Morris N. R. Pleiotropic effects of a DNA adenine methylation mutation (dam-3) in Escherichia coli K12. Mutat Res. 1975 Apr;28(1):15–26. doi: 10.1016/0027-5107(75)90309-7. [DOI] [PubMed] [Google Scholar]
- Meselson M. S., Radding C. M. A general model for genetic recombination. Proc Natl Acad Sci U S A. 1975 Jan;72(1):358–361. doi: 10.1073/pnas.72.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montelone B. A., Prakash S., Prakash L. Recombination and mutagenesis in rad6 mutants of Saccharomyces cerevisiae: evidence for multiple functions of the RAD6 gene. Mol Gen Genet. 1981;184(3):410–415. doi: 10.1007/BF00352514. [DOI] [PubMed] [Google Scholar]
- Orr-Weaver T. L., Szostak J. W., Rothstein R. J. Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6354–6358. doi: 10.1073/pnas.78.10.6354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saeki T., Machida I., Nakai S. Genetic control of diploid recovery after gamma-irradiation in the yeast Saccharomyces cerevisiae. Mutat Res. 1980 Dec;73(2):251–265. doi: 10.1016/0027-5107(80)90192-x. [DOI] [PubMed] [Google Scholar]
- Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]