- Review Article
- Published:
Contributions of genomics to life-history theory
Nature Reviews Geneticsvolume 8, pages116–125 (2007)Cite this article
1539Accesses
81Citations
Key Points
Life-history theory seeks to understand how evolutionary factors have shaped variation in life-history traits, both within and among organisms.
Life-history traits include such traits as age at first reproduction and reproductive effort, but, because they have direct impacts on these traits, life-history theory also deals with other traits such as body size.
A central assumption of life-history theory is that the most fit combination of trait values is determined by trade-offs among traits.
Much of the empirical research that stems from life-history theory is concerned with understanding how trade-offs arise.
Recent developments in genomics have enabled a dissection of the molecular underpinnings of trade-offs that are important to life-history evolution.
Genomic studies of trade-offs have shown that in many cases they arise because of the costs of up- or downregulation of gene expression.
Microarray analyses have indicated that changes in many genes could be involved in the expression of even dimorphic variation.
Life-history models typically predict single optima. Genomic analyses indicate that such optima might be attained by different suites of genes, and that different mechanisms can be involved in producing the same phenotypic end point.
Abstract
Life-history theory seeks to understand the factors that produce variation in life histories that are found both among and within species. At the organismal level there is a well developed mathematical framework, and an important focus of the current research is determining the biological underpinnings of this framework, with particular attention to the causal mechanisms that underlie trade-offs. Genomic approaches are proving useful in addressing this issue.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others
References
Roff, D. A.The Evolution of Life Histories: Theory and Analysis (Chapman & Hall, New York, 1992).
Stearns, S. C.The Evolution of Life Histories (Oxford Univ. Press, New York, 1992).References 1 and 2 provide a comprehensive overview of life-history theory.
Heppell, S. S. Application of life-history theory and population model analysis to turtle conservation.Copeia1998, 367–375 (1998).
Frisk, M. G., Miller, T. J. & Fogarty, M. J. Estimation and analysis of biological parameters in elasmobranch fishes: a comparative life history study.Can. J. Fish. Aquat. Sci.58, 969–981 (2001).
Hill, K. Life history theory and evolutionary anthropology.Evol. Anthropol.2, 78–88 (1993).
Stearns, S. C.Evolution in Health and Disease 328 (Oxford Univ. Press, Oxford, 1999).
Roff, D. A. & Fairbairn, D. J. The evolution of trade-offs: where are we?J. Evol. Biol. 10 Oct 2006 (doi:10.1111/j.1420-9101.2006.01255x)
Mousseau, T. A. & Roff, D. A. Natural selection and the heritability of fitness components.Heredity59, 181–198 (1987).
Houle, D. Comparing evolvability and variability of quantitative traits.Genetics130, 195–204 (1992).References 8 and 9 analyse the relationship between additive genetic variation and different categories of trait (life history, morphology, behavioural and physiological traits).
Brown, P. O. & Botstein, D. Exploring the new world of the genome with DNA microarrays.Nature Genet.21, 33–37 (1999).A review of the logic and methodology of microarray technology.
Roff, D. A.Life History Evolution (Sinauer Associates, Sunderland, 2002).
Roff, D. A. On being the right size.Am. Nat.118, 405–422 (1981).
Nijhout, H. F.Insect Hormones (Princeton Univ. Press, Princeton, 1994).
Finch, C. E. & Rose, M. R. Hormones and the physiological architecture of life history evolution.Q. Rev. Biol.70, 1–52 (1995).
Tian, D., Traw, M. B., Chen, J. Q., Kreitman, M. & Bergelson, J. Fitness costs of R-gene-mediated resistance inArabidopsis thaliana.Nature423, 74–77 (2003).
Heidel, A. J., Clarke, J. D., Antonovics, J. & Dong, X. N. Fitness costs of mutations affecting the systemic acquired resistance pathway inArabidopsis thaliana.Genetics168, 2197–2206 (2004).
Shimizu, K. K. & Purugganan, M. D. evolutionary and ecological genomics ofArabidopsis.Plant Physiol.138, 578–584 (2005).
Takken, F. L. W., Albrecht, M. & Tameling, I. L. Resistance proteins: molecular switches of plant defence.Curr. Opin. Plant Biol.9, 383–390 (2006).
Zhong, D. B., Pai, A. & Yan, G. Y. Costly resistance to parasitism: evidence from simultaneous quantitative trait loci mapping for resistance and fitness inTribolium castaneum.Genetics169, 2127–2135 (2005).
Stearns, S. C. & Magwene, P. The naturalist in a world of genomics.Am. Nat.161 171–180 (2003).
Oakeshott, J. G., Home, I., Sutherland, T. D. & Russell, R. J. The genomics of insecticide resistance.Genome Biol.4, 202 (2003).
McKenzie, J. A. & Batterham, P. The genetic, molecular and phenotypic consequences of selection for insecticide resistance.Trends Ecol. Evol.9, 166–169 (1994).Discusses the relationship between molecular mechanisms of resistance and fitness.
Smirle, M. J., Vincent, C., Zurowski, C. L. & Rancourt, B. Azinphosmethyl resistance in the obliquebanded leafroller,Choristoneura rosaceana: reversion in the absence of selection and relationship to detoxication enzyme activity.Pestic. Biochem. Physiol.61, 183–189 (1998).
Festucci-Buselli, R. A. et al. Expression of Cyp6g1 and Cyp12d1 in DDT resistant and susceptible strains ofDrosophila melanogaster.Insect Mol. Biol.14, 69–77 (2005).
Carriere, Y., Deland, J.-P., Roff, D. A. & Vincent, C. Life-history costs associated with the evolution of insecticide resistance.Proc. R. Soc. Lond. B Biol. Sci.258, 35–40 (1994).
Boivin, T., Bouvier, J. C., Chadoeuf, J., Beslay, D. & Sauphanor, B. Constraints on adaptive mutations in the codling mothCydia pomonella (L.): measuring fitness trade-offs and natural selection.Heredity90, 107–113 (2003).
Janmaat, A. F. & Myers, J. H. The influences of host plant and genetic resistance toBacillus thuringiensis on trade-offs between offspring number and growth rate in cabbage loopers,Trichoplusia ni.Ecol. Entomol.31, 172–178 (2006).
Foster, S. P. et al. Analogous pleiotropic effects of insecticide resistance genotypes in peach-potato aphids and houseflies.Heredity91, 98–106 (2003).
Berticat, C., Boquien, G., Raymond, M. & Chevillon, C. Insecticide resistance genes induce a mating competition cost inCulex pipiens mosquitoes.Genet. Res.79, 41–47 (2002).
Drnevich, J. M., Reedy, M. M., Ruedi, E. A., Rodriguez-Zas, S. & Hughes, K. A. Quantitative evolutionary genomics: differential gene expression and male reproductive success inDrosophila melanogaster.Proc. R. Soc. Lond. B Biol. Sci.271, 2267–2273 (2004).
Roux, F. & Reboud, X. Is the cost of herbicide resistance expressed in the breakdown of the relationships between characters? A case study using synthetic-auxin-resistantArabidopsis thaliana mutants.Genet. Res.85, 101–110 (2005).
Bochdanovits, Z. & de Jong, G. Antagonistic pleiotropy for life-history traits at the gene expression level.Proc. R. Soc. Lond. B Biol. Sci.271, S75–S78 (2004).
Hutchings, J. A. & Myers, R. A. The evolution of alternative mating strategies in variable environments.Evol. Ecol.8, 256–268 (1994).
Aubin-Horth, N., Letcher, B. H. & Hofmann, H. A. Interaction of rearing environment and reproductive tactic on gene expression profiles in Atlantic salmon.J. Hered.96, 261–278 (2005).
Aubin-Horth, N., Landry, C. R., Letcher, B. H. & Hofmann, H. A. Alternative life histories shape brain gene expression profiles in males of the same population.Proc. R. Soc. B Biol. Sci.272, 1655–1662 (2005).
Hofmann, H. A., Benson, M. E. & Fernald, R. D. Social status regulates growth rate: consequences for life-history strategies.Proc. Natl Acad. Sci.96, 14171–14176 (1999).
Hofmann, H. A. Functional genomics of neural and behavioral plasticityJ. Neurobiol.54, 272–282 (2003).
Roff, D. A. The evolution of threshold traits in animals.Q. Rev. Biol.71, 3–35 (1996).
Roff, D. A. Habitat persistence and the evolution of wing dimorphism in insects.Am. Nat.144, 772–798 (1994).
Abouheif, E. & Wray, G. A. Evolution of the gene network underlying wing polyphenism in ants.Science297, 249–252 (2002).A path-breaking demonstration that the same end point in a trait that is closely related to fitness can be achieved by different molecular mechanisms.
Valenzuela, R. K., Forbes, S. N., Keim, P. & Service, P. M. Quantitative trait loci affecting life span in replicated populations ofDrosophila melanogaster. II. Response to selection.Genetics168, 313–324 (2004).
Nuzhdin, S. V., Khazaeli, A. A. & Curtsinger, J. W. Survival analysis of life span quantitative trait loci inDrosophila melanogaster.Genetics170, 719–731 (2005).
Leips, J., Gilligan, P. & Mackay, T. R. C. Quantitative trait loci with age-specific effects on fecundity inDrosophila melanogaster.Genetics172, 1595–1605 (2006).
Wayne, M. L. et al. Quantitative trait locus mapping of fitness-related traits inDrosophila melanogaster.Genet. Res.77 107–116 (2001).
Promislow, D. E. L., Tatar, M., Khazaeli, A. A. & Curtsinger, J. W. Age-specific patterns of genetic variance inDrosophila melanogaster. I. Mortality.Genetics143, 839–848 (1996).
Hughes, K. A. & Reynolds, R. M. Evolutionary and mechanistic theories of aging.Annu. Rev. Entomol.50, 421–445 (2005).
Gems, D. & Partridge, L. Insulin/IGF signalling and ageing: seeing the bigger picture.Curr. Opin. Genet. Dev.11, 287–292 (2001).
Kirkwood, T. B. L. Genes that shape the course of ageing.Trends Endocrin. Metab.14, 345–347 (2003).
Brandt, B. W., Zwaan, B. J., Beekman, M., Westendorp, R. G. J. & Slagboom, P. E. Shuttling between species for pathways of lifespan regulation: a central role for the vitellogenin gene family?BioEssays27, 339–346 (2005).
Sgro, C. M. & Partridge, L. A delayed wave of death from reproduction inDrosophila.Science286, 2521–2524 (1999).
Kirkwood, T. B. L. Evolution of ageing.Mech. Ageing Dev.123, 737–745 (2002).
Messenger, S. L., Molineux, I. J. & Bull, J. J. Virulence evolution in a virus obeys a trade-off.Proc. R. Soc. B Biol. Sci.266, 397–404 (1999).
Wichman, H. A., Scott, L. A., Yarber, C. D. & Bull, J. J. Experimental evolution recapitulates natural evolution.Philos. Trans. R. Soc. B Biol. Sci.355, 1677–1684 (2000).
Bennett, A. F. & Lenski, R. E. Experimental evolution and its role in evolutionary physiology.Am. Zool.39, 346–362 (1999).
Ferea, T. L., Botstein, D., Brown, P. O. & Rosenzweig, R. F. Systematic changes in gene expression patterns following adaptive evolution in yeast.Proc. Natl Acad. Sci.96, 9721–9726 (1999).
Anderson, J. B., Ricker, N. & Sirjusingh, C. Antagonism between two mechanisms of antifungal drug resistance.Eukaryot. Cell5, 1243–1251 (2006).
LaMunyon, C. W. & Ward, S. Evolution of larger sperm in response to experimentally increased sperm competition inCaenorhabditis elegans.Proc. R. Soc. B Biol. Sci.269, 1125–1128 (2002).
Cutter, A. D. Mutation and the experimental evolution of outcrossing inCaenorhabditis elegans.J. Evol. Biol.18, 27–34 (2005).
Reboud, X. & Bell, G. Experimental evolution inChlamydomonas. III. Evolution of specialist and generalist types in environments that vary in space and time.Heredity78, 507–514 (1997).
Chippindale, A. K., Alipaz, J. A., Chen, H. W. & Rose, M. R. Experimental evolution of accelerated development inDrosophila. 1. Development speed and larval survival.Evolution51, 1536–1551 (1997).
Bettencourt, B. R., Feder, M. E. & Cavicchi, S. Experimental evolution of Hsp70 expression and thermotolerance inDrosophila melanogaster.Evolution53, 484–492 (1999).
Stearns, S. C., Ackermann, M., Doebeli, M. & Kaiser, M. Experimental evolution of aging, growth, and reproduction in fruitflies.Proc. Natl Acad. Sci.97, 3309–3313 (2000).
Mery, F. & Kawecki, T. J. Experimental evolution of learning ability in fruit flies.Proc. Natl Acad. Sci.99, 14274–14279 (2002).
Roff, D. A. & Fairbairn, D. J. Laboratory evolution of the migratory polymorphism in the sand cricket: combining physiology with quantitative genetics.Physiol. Biochem. Zool. (in the press).
Stowe, K. A. Experimental evolution of resistance inBrassica rapa: correlated response of tolerance in lines selected for glucosinolate content.Evolution52, 703–712 (1998).
Krebs, R. A. & Feder, M. E. Deleterious consequences of Hsp70 overexpression inDrosphila melanogaster larvae.Cell Stress Chaperones2, 60–71 (1997).
Zhang, E. & Ferenci, T. OmpF changes and the complexity ofEscherichia coli adaptation to prolonged lactose limitation.FEMS Microbiol. Lett.176, 395–401 (1999).
Mohamed, S. A., Rottmann, O. & Pirchner, F. Components of heterosis for growth traits and litter size in line crosses of mice after long-term selection.J. Anim. Breed. Genet.118, 263–270 (2001).
Bult, A. & Lynch, C. B. Multiple selection responses in house mice bidirectionally selected for thermoregulatory nest-building behavior: crosses of replicate lines.Behav. Genet.26, 439–446 (1996).
Ungerer, M. C., Linder, C. R. & Rieseberg, L. H. Effects of genetic background on response to selection in experimental populations ofArabidopsis thaliana.Genetics163, 277–286 (2003).
Ungerer, M. C. & Rieseberg, L. H. Genetic architecture of a selection response inArabidopsis thaliana.Evolution57, 2531–2539 (2003).
Joshi, A. & Thompson, J. N. Alternative routes to the evolution of competitive ability in two competing species ofDrosophila.Evolution4, 616–625 (1995).
Wichman, H. A., Scott, L. A., Yarber, C. D. & Bull, J. J. Experimental evolution recapitulates natural evolution.Philos. Trans. R. Soc. B Biol. Sci.355, 1677–1684 (2000).
Gilchrist, A. S. & Partridge, L. A comparison of the genetic basis of wing size divergence in three parallel body size clines ofDrosophila melanogaster.Genetics153, 1775–1787 (1999).
Calboli, F. C. F., Kennington, W. J. & Partridge, L. QTL mapping reveals a striking coincidence in the positions of genomic regions associated with adaptive variation in body size in parallel clines ofDrosophila melanogaster on different continents.Evolution57, 2653–2658 (2003).
Gilchrist, G. W., Huey, R. B., Balanya, J., Pascual, M. & Serra, L. A time series of evolution in action: A latitudinal cline in wing size in South AmericanDrosophila subobscura.Evolution58, 768–780 (2004).
Calboli, F. C. F., Gilchrist, G. W. & Partridge, L. Different cell size and cell number contribution in two newly established and one ancient body size cline ofDrosophila subobscura.Evolution57, 566–573 (2003).
McKenzie, J. A. inEvolutionary Ecology (eds Fox, C. W., Roff, D. A. & Fairbairn Daphne, J.) 347–360 (Oxford Univ. Press, Oxford, 2001).
Walsh, B. Quantitative genetics in the age of genomics.Theor. Popul. Biol.59, 175–184 (2001).
Roff, D. A., Heibo, E. & Vollestad, L. A. The importance of growth and mortality costs in the evolution of the optimal life history.J. Evol. Biol.19, 1920–1930 (2006).
Garland, T. J., Midford, P. E. & Ives, A. R. An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values.Am. Zool.39, 374–388 (1999).
Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidenceAm. Nat.160, 712–726 (2002).
Camara, M. D. & Pigliucci, M. Mutational contributions to variance-covariance matrices: an experimental approach using induced mutations inArabidopsis thaliana.Evolution53, 1692–1703 (1999).
Flatt, T. & Kawecki, T. J. Pleiotropic effects ofmethoprene-tolerant (Met), a gene involved in juvenile hormone metabolism, on life history traits inDrosophila melanogaster.Genetica122, 141–160 (2004).
Zinser, E. R., Schneider, D., Blott, M. & Kolter, R. Bacterial evolution through the selective loss of beneficial genes: trade-offs in expression involving two loci.Genetics164, 1271–1277 (2003).
Stearns, S. C. & Kaiser, M. Effects on fitness components of P-element inserts inDrosophila melanogaster: analysis of trade-offs.Evolution50, 795–806 (1996).
Mauricio, R. Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology.Nature Rev. Genet.2, 370–381 (2001).
Erickson, D. L., Fenster, C. B., Stenøien, H. K. & Price, D. Quantitative trait locus analyses and the study of evolutionary process.Mol. Ecol.13, 2505–2522 (2004).
Gibson, G. Microarrays in ecology and evolution: a preview.Mol. Ecol.11, 17–24 (2002).
Rise, M. L. et al. Development and application of a salmonid EST database and cDNA microarray: data mining and interspecific hybridization characteristics.Genome Res.14, 478–490 (2004).
Evans, J. D. & Wheeler, D. E. Gene expression and the evolution of insect polyphenisms.BioEssays23, 62–68 (2001).
Schluter, D. Adaptive radiation along genetic lines of least resistance.Evolution50, 1766–1774 (1996).
Blows, M. W. & Hoffmann, A. A. A reassessment of genetic limits to evolutionary change.Ecology86, 1371–1384 (2005).
Acknowledgements
This work was supported by the US National Science Foundation.
Author information
Authors and Affiliations
Department of Biology, University of California, Riverside, 92521, California, USA
Derek A. Roff
- Derek A. Roff
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toDerek A. Roff.
Ethics declarations
Competing interests
The author declares no competing financial interests.
Related links
Glossary
- Pleiotropy
The influence of a locus on more than one trait.
- Eigenvectors
The set of coefficients that define each principal component.
- Eigenvalue
The variance of each principal component.
- Linkage disequilibrium
The non-random association between two loci. This can be caused by physical linkage due to the two loci being on the same chromosome, or to disassortative mating.
- Antagonistic pleiotropy
A negative genetic correlation between traits such that selection on one trait is opposed by the consequent selection on the second trait.
- Dimorphic variation
Variation in which two distinct morphs can be identified (for example, wing dimorphism in insects).
- Threshold model
The threshold model assumes that there is a normally distributed underlying trait, called the liability, plus a threshold: individuals above the threshold follow one developmental pathway, whereas individuals below the threshold follow the alternative pathway.
- Holometabolous
A mode of development in insects in which there are discrete larval and pupal stages (as in Diptera and Lepidoptera).
- Hemimetabolous
Insects in which development proceeds without a distinct pupal stage, with the nymphal stages moulting directly into the adult form (as in Hemiptera and Orthoptera).
- Mutation accumulation
One hypothesis to account for senescence. Mutations accumulate during life as a result of errors that are incurred during sequential somatic cell divisions. Such mutations have deleterious effects on survival.
Rights and permissions
About this article
Cite this article
Roff, D. Contributions of genomics to life-history theory.Nat Rev Genet8, 116–125 (2007). https://doi.org/10.1038/nrg2040
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Mapping the adaptive landscape of a major agricultural pathogen reveals evolutionary constraints across heterogeneous environments
- Anik Dutta
- Fanny E Hartmann
- Daniel Croll
The ISME Journal (2021)
Antagonistic Pleiotropy in Human Disease
- Sean G. Byars
- Konstantinos Voskarides
Journal of Molecular Evolution (2020)
Genomic signatures of local adaptation to the degree of environmental predictability in rotifers
- Lluis Franch-Gras
- Christoph Hahn
- Africa Gómez
Scientific Reports (2018)
BMC Zoology – a home for all zoological research in the BMC series
- Dirk Krüger
- Laurence Packer
- M. Brock Fenton
BMC Zoology (2016)
Identification of differentially expressed genes associated with differential body size in mandarin fish (Siniperca chuatsi)
- Changxu Tian
- Ling Li
- Yi Song
Genetica (2016)