- Article
- Published:
Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell–stimulating programs in basophils
- Kang Chen1,2,
- Weifeng Xu1,
- Melanie Wilson3,
- Bing He1,
- Norman W Miller3,
- Eva Bengtén3,
- Eva-Stina Edholm3,
- Paul A Santini1,2,
- Poonam Rath1,2,
- April Chiu1,
- Marco Cattalini4,
- Jiri Litzman5,
- James B Bussel6,
- Bihui Huang7,2,
- Antonella Meini4,
- Kristian Riesbeck8,
- Charlotte Cunningham-Rundles9,
- Alessandro Plebani4 &
- …
- Andrea Cerutti1,2
Nature Immunologyvolume 10, pages889–898 (2009)Cite this article
5304Accesses
359Citations
43Altmetric
Abstract
Immunoglobulin D (IgD) is an enigmatic antibody isotype that mature B cells express together with IgM through alternative RNA splicing. Here we report active T cell–dependent and T cell–independent IgM-to-IgD class switching in B cells of the human upper respiratory mucosa. This process required activation-induced cytidine deaminase (AID) and generated local and circulating IgD-producing plasmablasts reactive to respiratory bacteria. Circulating IgD bound to basophils through a calcium-mobilizing receptor that induced antimicrobial, opsonizing, inflammatory and B cell–stimulating factors, including cathelicidin, interleukin 1 (IL-1), IL-4 and B cell–activating factor (BAFF), after IgD crosslinking. By showing dysregulation of IgD class–switched B cells and 'IgD-armed' basophils in autoinflammatory syndromes with periodic fever, our data indicate that IgD orchestrates an ancestral surveillance system at the interface between immunity and inflammation.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Rowe, D.S. & Fahey, J.L. A new class of human immunoglobulins.J. Exp. Med.121, 171–199 (1965).
Butler, J.E., Sun, J. & Navarro, P. The swine Ig heavy chain locus has a single JH and no identifiable IgD.Int. Immunol.8, 1897–1904 (1996).
Ohta, Y. & Flajnik, M. IgD, like IgM, is a primordial immunoglobulin class perpetuated in most jawed vertebrates.Proc. Natl. Acad. Sci. USA103, 10723–10728 (2006).
Preud'homme, J.L. et al. Structural and functional properties of membrane and secreted IgD.Mol. Immunol.37, 871–887 (2000).
Bengten, E. et al. The IgH locus of the channel catfish,Ictalurus punctatus, contains multiple constant region gene sequences: different genes encode heavy chains of membrane and secreted IgD.J. Immunol.169, 2488–2497 (2002).
Schlissel, M.S. Regulating antigen-receptor gene assembly.Nat. Rev. Immunol.3, 890–899 (2003).
Maki, R. et al. The role of DNA rearrangement and alternative RNA processing in the expression of immunoglobulin δ genes.Cell24, 353–365 (1981).
Nitschke, L., Kosco, M.H., Kohler, G. & Lamers, M.C. Immunoglobulin D-deficient mice can mount normal immune responses to thymus-independent and -dependent antigens.Proc. Natl. Acad. Sci. USA90, 1887–1891 (1993).
Roes, J. & Rajewsky, K. Immunoglobulin D (IgD)-deficient mice reveal an auxiliary receptor function for IgD in antigen-mediated recruitment of B cells.J. Exp. Med.177, 45–55 (1993).
Lutz, C. et al. IgD can largely substitute for loss of IgM function in B cells.Nature393, 797–801 (1998).
Monroe, J.G., Havran, W.L. & Cambier, J.C. B lymphocyte activation: entry into cell cycle is accompanied by decreased expression of IgD but not IgM.Eur. J. Immunol.13, 208–213 (1983).
Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme.Cell102, 553–563 (2000).
Odegard, V.H. & Schatz, D.G. Targeting of somatic hypermutation.Nat. Rev. Immunol.6, 573–583 (2006).
Chaudhuri, J. & Alt, F.W. Class-switch recombination: interplay of transcription, DNA deamination and DNA repair.Nat. Rev. Immunol.4, 541–552 (2004).
Aruffo, A. et al. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome.Cell72, 291–300 (1993).
Litinskiy, M.B. et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL.Nat. Immunol.3, 822–829 (2002).
Castigli, E. et al. TACI and BAFF-R mediate isotype switching in B cells.J. Exp. Med.201, 35–39 (2005).
Xu, W. et al. Epithelial cells trigger frontline immunoglobulin class switching through a pathway regulated by the inhibitor SLPI.Nat. Immunol.8, 294–303 (2007).
He, B. et al. Intestinal bacteria trigger T cell-independent immunoglobulin A2 class switching by inducing epithelial-cell secretion of the cytokine APRIL.Immunity26, 812–826 (2007).
Cerutti, A. The regulation of IgA class switching.Nat. Rev. Immunol.8, 421–434 (2008).
Castigli, E. et al. TACI is mutant in common variable immunodeficiency and IgA deficiency.Nat. Genet.37, 829–834 (2005).
McHeyzer-Williams, M.G. & Ahmed, R. B cell memory and the long-lived plasma cell.Curr. Opin. Immunol.11, 172–179 (1999).
Stavnezer, J. Antibody class switching.Adv. Immunol.61, 79–146 (1996).
Arpin, C. et al. The normal counterpart of IgD myeloma cells in germinal center displays extensively mutated IgVH gene, Cμ-Cδ switch, and λ light chain expression.J. Exp. Med.187, 1169–1178 (1998).
Plebani, A. et al. IgM and IgD concentrations in the serum and secretions of children with selective IgA deficiency.Clin. Exp. Immunol.53, 689–696 (1983).
Liu, Y.J. et al. Normal human IgD+ IgM− germinal center B cells can express up to 80 mutations in the variable region of their IgD transcripts.Immunity4, 603–613 (1996).
Brandtzaeg, P. et al. The B-cell system of human mucosae and exocrine glands.Immunol. Rev.171, 45–87 (1999).
Koelsch, K. et al. Mature B cells class switched to IgD are autoreactive in healthy individuals.J. Clin. Invest.117, 1558–1565 (2007).
Conrad, D.H., Ben-Sasson, S.Z., Le Gros, G., Finkelman, F.D. & Paul, W.E. Infection withNippostrongylus brasiliensis or injection of anti-IgD antibodies markedly enhances Fc-receptor-mediated interleukin 4 production by non-B, non-T cells.J. Exp. Med.171, 1497–1508 (1990).
Seder, R.A. et al. Mouse splenic and bone marrow cell populations that express high-affinity Fcε receptors and produce interleukin 4 are highly enriched in basophils.Proc. Natl. Acad. Sci. USA88, 2835–2839 (1991).
Yoshimoto, T., Bendelac, A., Watson, C., Hu-Li, J. & Paul, W.E. Role of NK1.1+ T cells in a TH2 response and in immunoglobulin E production.Science270, 1845–1847 (1995).
Gauchat, J.F. et al. Induction of human IgE synthesis in B cells by mast cells and basophils.Nature365, 340–343 (1993).
Min, B. et al. Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite.J. Exp. Med.200, 507–517 (2004).
Sokol, C.L., Barton, G.M., Farr, A.G. & Medzhitov, R. A mechanism for the initiation of allergen-induced T helper type 2 responses.Nat. Immunol.9, 310–318 (2008).
Denzel, A. et al. Basophils enhance immunological memory responses.Nat. Immunol.9, 733–742 (2008).
Martins, G. & Calame, K. Regulation and functions of Blimp-1 in T and B lymphocytes.Annu. Rev. Immunol.26, 133–169 (2008).
Bekeredjian-Ding, I. et al. TLR9-activating DNA up-regulates ZAP70 via sustained PKB induction in IgM+ B cells.J. Immunol.181, 8267–8277 (2008).
Klein, U., Rajewsky, K. & Kuppers, R. Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells.J. Exp. Med.188, 1679–1689 (1998).
Zhao, Y. et al. Artiodactyl IgD: the missing link.J. Immunol.169, 4408–4416 (2002).
Kluin, P.M. et al. IgD class switching: identification of a novel recombination site in neoplastic and normal B cells.Eur. J. Immunol.25, 3504–3508 (1995).
Granucci, F. et al. Inducible IL-2 production by dendritic cells revealed by global gene expression analysis.Nat. Immunol.2, 882–888 (2001).
Leonard, W.J. & Spolski, R. Interleukin-21: a modulator of lymphoid proliferation, apoptosis and differentiation.Nat. Rev. Immunol.5, 688–698 (2005).
Cunningham-Rundles, C. & Ponda, P.P. Molecular defects in T- and B-cell primary immunodeficiency diseases.Nat. Rev. Immunol.5, 880–892 (2005).
Garibyan, L. et al. Dominant-negative effect of the heterozygous C104R TACI mutation in common variable immunodeficiency (CVID).J. Clin. Invest.117, 1550–1557 (2007).
Zhang, L. et al. Transmembrane activator and calcium-modulating cyclophilin ligand interactor mutations in common variable immunodeficiency: clinical and immunologic outcomes in heterozygotes.J. Allergy Clin. Immunol.120, 1178–1185 (2007).
Riesbeck, K. & Nordstrom, T. Structure and immunological action of the human pathogenMoraxella catarrhalis IgD-binding protein.Crit. Rev. Immunol.26, 353–376 (2006).
Vladutiu, A.O. Immunoglobulin D: properties, measurement, and clinical relevance.Clin. Diagn. Lab. Immunol.7, 131–140 (2000).
Dawicki, W. & Marshall, J.S. New and emerging roles for mast cells in host defence.Curr. Opin. Immunol.19, 31–38 (2007).
Karasuyama, H., Mukai, K., Tsujimura, Y. & Obata, K. Newly discovered roles for basophils: a neglected minority gains new respect.Nat. Rev. Immunol.9, 9–13 (2008).
Gala, F.A. & Morrison, S.L. The role of constant region carbohydrate in the assembly and secretion of human IgD and IgA1.J. Biol. Chem.277, 29005–29011 (2002).
Yamaguchi, Y. et al. Identification of multiple novel epididymis-specific β-defensin isoforms in humans and mice.J. Immunol.169, 2516–2523 (2002).
Oppenheim, J.J. & Yang, D. Alarmins: chemotactic activators of immune responses.Curr. Opin. Immunol.17, 359–365 (2005).
Garlanda, C., Bottazzi, B., Bastone, A. & Mantovani, A. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility.Annu. Rev. Immunol.23, 337–366 (2005).
Ryan, J.G. & Kastner, D.L. Fevers, genes, and innate immunity.Curr. Top. Microbiol. Immunol.321, 169–184 (2008).
Drenth, J.P., Goertz, J., Daha, M.R. & van der Meer, J.W. Immunoglobulin D enhances the release of tumor necrosis factor-α, and interleukin-1β as well as interleukin-1 receptor antagonist from human mononuclear cells.Immunology88, 355–362 (1996).
Johansen, F.E. et al. Regional induction of adhesion molecules and chemokine receptors explains disparate homing of human B cells to systemic and mucosal effector sites: dispersion from tonsils.Blood106, 593–600 (2005).
Xue, B. et al. Physiology of IgD. IV. Enhancement of antibody production in mice bearing IgD-secreting plasmacytomas.J. Exp. Med.159, 103–113 (1984).
Schiemann, B. et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway.Science293, 2111–2114 (2001).
Miller, N.W. et al. Development and characterization of channel catfish long term B cell lines.J. Immunol.152, 2180–2189 (1994).
Acknowledgements
We thank A. Kirshenbaum and D. Metcalfe (US National Institutes of Health) for the mast cell line LAD2; F. Facchetti (Università di Brescia) for tissue samples; and R. Silver, R. Schreiner and F. Diaz (Weill Medical College of Cornell University) for primary lung mast cells and discussion of transcytosis assays. Supported by the US National Institutes of Health (R01 AI057653, R01 AI057653 supplement and R01 AI074378 to A.C.; and funds from T32 AI07621 to W.X.), the Cancer Research Institute (P.A.S.), The Irma T. Hirschl Charitable Trust (A.C.), the Ministerio de Ciencia e Innovación (Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica SAF 2008-02725 to A.C.) and Fondazione C. Golgi and Centro Immunodeficienze Mario Di Martino (A.P.).
Author information
Authors and Affiliations
Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
Kang Chen, Weifeng Xu, Bing He, Paul A Santini, Poonam Rath, April Chiu & Andrea Cerutti
Graduate Program of Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, New York, USA
Kang Chen, Paul A Santini, Poonam Rath, Bihui Huang & Andrea Cerutti
Department of Microbiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
Melanie Wilson, Norman W Miller, Eva Bengtén & Eva-Stina Edholm
Clinica Pediatrica e Istituto di Medicina Molecolare 'A. Nocivelli', Università di Brescia, Brescia, Italy
Marco Cattalini, Antonella Meini & Alessandro Plebani
Department of Clinical Immunology and Allergology, St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
Jiri Litzman
Department of Pediatrics, Weill Cornell Medical College, New York, New York, USA
James B Bussel
Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York, USA
Bihui Huang
Department of Laboratory Medicine, Medical Microbiology, Malmö University Hospital, Lund University, Malmö, Sweden
Kristian Riesbeck
Mount Sinai Medical Center, New York, New York, USA
Charlotte Cunningham-Rundles
- Kang Chen
Search author on:PubMed Google Scholar
- Weifeng Xu
Search author on:PubMed Google Scholar
- Melanie Wilson
Search author on:PubMed Google Scholar
- Bing He
Search author on:PubMed Google Scholar
- Norman W Miller
Search author on:PubMed Google Scholar
- Eva Bengtén
Search author on:PubMed Google Scholar
- Eva-Stina Edholm
Search author on:PubMed Google Scholar
- Paul A Santini
Search author on:PubMed Google Scholar
- Poonam Rath
Search author on:PubMed Google Scholar
- April Chiu
Search author on:PubMed Google Scholar
- Marco Cattalini
Search author on:PubMed Google Scholar
- Jiri Litzman
Search author on:PubMed Google Scholar
- James B Bussel
Search author on:PubMed Google Scholar
- Bihui Huang
Search author on:PubMed Google Scholar
- Antonella Meini
Search author on:PubMed Google Scholar
- Kristian Riesbeck
Search author on:PubMed Google Scholar
- Charlotte Cunningham-Rundles
Search author on:PubMed Google Scholar
- Alessandro Plebani
Search author on:PubMed Google Scholar
- Andrea Cerutti
Search author on:PubMed Google Scholar
Contributions
K.C. designed and did research and wrote the paper; W.X., M.W., B. He, E.B., E.-S.E., N.W.M. and P.R. did research and discussed data; P.A.S. discussed data; B.Hu. provided reagents and did research; A.Ch., A.M., M.C., J.L., K.R., C.C.-R., J.B.B. and A.P. provided blood and tissue samples and discussed data; and A.Ce. designed research, discussed data and wrote the paper.
Corresponding author
Correspondence toAndrea Cerutti.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–11 and Supplementary Tables 1–2 (PDF 2272 kb)
Rights and permissions
About this article
Cite this article
Chen, K., Xu, W., Wilson, M.et al. Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell–stimulating programs in basophils.Nat Immunol10, 889–898 (2009). https://doi.org/10.1038/ni.1748
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Tocilizumab for treating mevalonate kinase deficiency and TNF receptor-associated periodic syndrome: a case series and literature review
- Yandie Li
- Meiping Lu
Pediatric Rheumatology (2024)
Nano zinc supplementation in ruminant’s livestock, influence on physiological, immune functions and oxidative stability of West African dwarf goat bucks
- Azeez Olanrewaju Yusuf
- Tomisin Kamaldeen Adeyi
- Sunday Olusiji Sowande
Comparative Clinical Pathology (2023)
High serum immunoglobulin D levels in systemic lupus erythematosus: more to be found?
- Peifen Liang
- Qiuyan Huang
- Qiongqiong Yang
Clinical Rheumatology (2023)
Rad52 mediates class-switch DNA recombination to IgD
- Yijiang Xu
- Hang Zhou
- Paolo Casali
Nature Communications (2022)
Extrafollicular IgD+ B cells generate IgE antibody secreting cells in the nasal mucosa
- Alessia Corrado
- Richard P. Ramonell
- F. Eun-Hyung Lee
Mucosal Immunology (2021)