- Letter
- Published:
RecalibratingEquus evolution using the genome sequence of an early Middle Pleistocene horse
- Ludovic Orlando1 na1,
- Aurélien Ginolhac1 na1,
- Guojie Zhang2 na1,
- Duane Froese3,
- Anders Albrechtsen4,
- Mathias Stiller5,
- Mikkel Schubert1,
- Enrico Cappellini1,
- Bent Petersen6,
- Ida Moltke4,7,
- Philip L. F. Johnson8,
- Matteo Fumagalli9,
- Julia T. Vilstrup1,
- Maanasa Raghavan1,
- Thorfinn Korneliussen1,
- Anna-Sapfo Malaspinas1,
- Josef Vogt6,
- Damian Szklarczyk10 nAff32,
- Christian D. Kelstrup10,
- Jakob Vinther11 nAff32,
- Andrei Dolocan12,
- Jesper Stenderup1,
- Amhed M. V. Velazquez1,
- James Cahill5,
- Morten Rasmussen1,
- Xiaoli Wang2,
- Jiumeng Min2,
- Grant D. Zazula13,
- Andaine Seguin-Orlando1,14,
- Cecilie Mortensen1,14,
- Kim Magnussen1,14,
- John F. Thompson15,
- Jacobo Weinstock16,
- Kristian Gregersen1,17,
- Knut H. Røed18,
- Véra Eisenmann19,
- Carl J. Rubin20,
- Donald C. Miller21,
- Douglas F. Antczak21,
- Mads F. Bertelsen22,
- Søren Brunak6,23,
- Khaled A. S. Al-Rasheid24,
- Oliver Ryder25,
- Leif Andersson20,
- John Mundy26,
- Anders Krogh1,4,
- M. Thomas P. Gilbert1,
- Kurt Kjær1,
- Thomas Sicheritz-Ponten6,23,
- Lars Juhl Jensen10,
- Jesper V. Olsen10,
- Michael Hofreiter27,
- Rasmus Nielsen28,
- Beth Shapiro5,
- Jun Wang2,26,29,30 &
- …
- Eske Willerslev1
Naturevolume 499, pages74–78 (2013)Cite this article
40kAccesses
760Citations
936Altmetric
Subjects
Abstract
The rich fossil record of equids has made them a model for evolutionary processes1. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560–780 thousand years before present (kyrbp)2,3. Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyrbp), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski’s horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that theEquus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0–4.5 million years before present (Myrbp), twice the conventionally accepted time to the most recent common ancestor of the genusEquus4,5. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski’s and domestic horse populations diverged 38–72 kyrbp, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski’s horse investigated. This supports the contention that Przewalski’s horses represent the last surviving wild horse population6. We find similar levels of genetic variation among Przewalski’s and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski’s horse. Such regions could correspond to loci selected early during domestication.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Accession codes
Accessions
Sequence Read Archive
Data deposits
All sequence data have been submitted to Sequence Read Archive under accession numberSRA082086 and are available for download, together with final BAM and VCF files,de novo donkey scaffolds, and proteomic data athttp://geogenetics.ku.dk/publications/middle-pleistocene-omics.
References
Franzen, J. L.The Rise of Horses: 55 Million Years of Evolution (Johns Hopkins Univ. Press, 2010)
Froese, D. G., Westgate, J. A., Reyes, A. V., Enkin, R. J. & Preece, S. J. Ancient permafrost and a future, warmer Arctic.Science321, 1648 (2008)
Westgate, J. A. et al. Gold Run tephra: A Middle Pleistocene stratigraphic and paleoenvironmental marker across west-central Yukon Territory, Canada.Can. J. Earth Sci.46, 465–478 (2009)
Eisenmann, V. Origins, dispersals, and migrations ofEquus (Mammalia, Perissofactyla).Courier Forschungsintitut Senckenberg153, 161–170 (1992)
Forsten, A. Mitochondrial-DNA timetable and the evolution ofEquus: Comparison of molecular and paleontological evidence.Ann. Zool. Fenn.28, 301–309 (1992)
Goto, H. et al. A massively parallel sequencing approach uncovers ancient origins and high genetic variability of endangered Przewalski’s horses.Genome Biol. Evol.3, 1096–1106 (2011)
Reyes, A. V., Froese, D. G. & Jensen, B. J. Response of permafrost to last interglacial warming: field evidence from non-glaciated Yukon and Alaska.Quat. Sci. Rev.29, 3256–3274 (2010)
Orlando, L. et al. True single-molecule DNA sequencing of a Pleistocene horse bone.Genet. Res.21, 1705–1719 (2011)
Lindahl, T. Instability and decay of the primary structure of DNA.Nature362, 709–715 (1993)
Willerslev, E. et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland.Science317, 111–114 (2007)
Miller, W. et al. Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change.Proc. Natl Acad. Sci. USA109, E2382–E2390 (2012)
Cappellini, E. et al. Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins.J. Proteome Res.11, 917–926 (2012)
Ginolhac, A. et al. Improving the performance of True Single Molecule Sequencing for ancient DNA.BMC Genomics13, 177 (2012)
Rasmussen, M. et al. Ancient human genome sequence of an extinct Palaeo-Eskimo.Nature463, 757–762 (2010)
Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual.Science338, 222–226 (2012)
van Doorn, N. L., Wilson, J., Hollund, H., Soressi, M. & Collins, M. J. Site-specific deamidation of glutamine: a new marker of bone collagen deterioration.Rapid Commun. Mass Spectrom.26, 2319–2327 (2012)
Vilstrup, J. T. et al. Mitochondrial phylogenomics of modern and ancient equids.PLoS ONE8, e55950 (2013)
McFadden, B. J. & Carranza-Castaneda, O. Cranium ofDinohippus mexicanus (Mammalia Equidae) from the early Pliocene (latest Hemphillian) of central Mexico and the origin ofEquus.Bull. Florida Museum Nat..History43, 163–185 (2002)
Weinstock, J. et al. Evolution, systematics, and phylogeography of Pleistocene horses in the new world: a molecular perspective.PLoS Biol.3, e241 (2005)
Green, R. E. et al. A draft sequence of the Neandertal genome.Science328, 710–722 (2010)
Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences.Nature475, 493–496 (2011)
Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans.Nature479, 359–364 (2011)
International Union for Conservation of Nature. IUCN Red List of Threatened Species, Version 2010.1,http://www.iucnredlist.org (downloaded 11 March 2010)
Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia.Nature468, 1053–1060 (2010)
Bowling, A. T. et al. Genetic variation in Przewalski’s horses, with special focus on the last wild caught mare, 231 Orlitza III.Cytogenet. Genome Res.102, 226–234 (2003)
Wade, C. M. et al. Genome sequence, comparative analysis, and population genetics of the domestic horse.Science326, 865–867 (2009)
Allentoft, M. E. et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils.Proc. R. Soc. Lond. B279, 4724–4733 (2012)
Kelstrup, C. D., Young, C., Lavallee, R., Nielsen, M. L. & Olsen, J. V. Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer.J. Proteome Res.11, 3487–3497 (2012)
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.Bioinformatics25, 1754–1760 (2009)
Orlando, L. et al. Revising the recent evolutionary history of equids using ancient DNA.Proc. Natl Acad. Sci. USA106, 21754–21759 (2009)
Rohland, N. & Hofreiter, M. Ancient DNA extraction from bones and teeth.Nature Protocols2, 1756–1762 (2007)
Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing.Cold Spring Harb. Protoc..6,http://dx.doi.org/10.1101/pdb.prot5448 (2010)
Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-readde novo assembler.GigaScience1, 18 (2012)
Stanke, M., Steinkamp, R., Waack, S. & Morgenstern, B. AUGUSTUS: a web server for gene finding in eukaryotes.Nucleic Acids Res.32, W309–W312 (2004)
Carlton, J. M. et al. Draft genome sequence of the sexually transmitted pathogenTrichonomas vaginalis.Science315, 207–212 (2007)
Li, H. & Durbin, R. R. Fast and accurate long-read alignment with Burrows-Wheeler transform.Bioinformatics26, 589–595 (2010)
Li, H. et al. The Sequence alignment/map (SAM) format and SAMtools.Bioinformatics25, 2078–2079 (2009)
McCue, M. E. et al. A high density SNP array for the domestic horse and extant Perissodactyla: utility for association mapping, genetic diversity, and phylogeny studies.PLoS Genet.8, e1002451 (2012)
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses.Am. J. Hum. Genet.81, 559–575 (2007)
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis.PLoS Genet.2, e190 (2006)
R Development Core Team. A language and environment for statistical computing,http://www.R-project.org (R Foundation for Statistical Computing, 2011)
McLaren, W. et al. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor.Bioinformatics26, 2069–2070 (2010)
Smith, C. I., Chamberlain, A. T., Riley, M. S., Stringer, C. & Collins, M. J. The thermal history of human fossils and the likelihood of successful DNA amplification.J. Hum. Evol.45, 203–217 (2003)
Ginolhac, A., Rasmussen, M., Gilbert, T. M., Willerslev, E. & Orlando, L. mapDamage: testing for damage patterns in ancient DNA sequences.Bioinformatics27, 2153–2155 (2011)
Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal.Proc. Natl Acad. Sci. USA104, 14616–14621 (2007)
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.Nature Biotechnol.26, 1367–1372 (2008)
Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment.J. Proteome Res.10, 1794–1805 (2011)
Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Nucleic Acids Res.30, 3059–3066 (2002)
Katoh, K. & Toh, H. Recent developments in the MAFFT multiple sequence alignment program.Brief. Bioinform.9, 286–298 (2008)
Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Bioinformatics22, 2688–2690 (2006)
Stamatakis, A. et al. RAxML-Light: a tool for computing Terabyte phylogenies.Bioinformatics28, 2064–2066 (2012)
Sanderson, M. J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock.Bioinformatics19, 301–302 (2003)
Shimodaira, H. & Hasegawa, M. CONSEL: for assessing the confidence of phylogenetic tree selection.Bioinformatics17, 1246–1247 (2001)
Lippold, S., Matzke, N. J., Reissmann, M. & Hofreiter, M. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication.BMC Evol. Biol.11, 328 (2011)
Achilli, A. et al. Mitochondrial genomes from modern horses reveal the major haplogroups that underwent domestication.Proc. Natl Acad. Sci. USA109, 2449–2454 (2012)
Warmuth, V. et al. Reconstructing the origin and spread of horse domestication in the Eurasian steppe.Proc. Natl Acad. Sci. USA109, 8202–8206 (2012)
Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees.BMC Evol. Biol.7, 214 (2007)
Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7.Mol. Biol. Evol.29, 1969–1973 (2012)
Rambaut, A. & Drummond, A. J. Tracer v1. 5,http://beast.bio.ed.ac.uk/Tracer (2009)
Hudson, R. R. Generating samples under a Wright-Fisher neutral model of genetic variation.Bioinformatics18, 337–338 (2002)
Zhang, Z.Computational Molecular Evolution (Oxford Univ. Press, 2006)
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources.Nature Protocols4, 44–57 (2009)
Nielsen, R. Molecular signatures of natural selection.Annu. Rev. Genet.39, 197–218 (2005)
Busing, F. M. T. A., Meijer, E. & Van Der Leeden, R. Delete-m Jackknife for Unequalm.Stat. Comput.9, 3–8 (1999)
Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. J. & McInerney, J. O. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified.BMC Evol. Biol.6, 29 (2006)
Guindon, S. et al. New algorithms and methods to estimate Maximum-Likelihood phylogenies: assessing the performance of PhyML 3.0.Syst. Biol.59, 307–321 (2010)
Acknowledgements
We thank T. Brand, the laboratory technicians at the Danish National High-throughput DNA Sequencing Centre and the Illumina sequencing platform at SciLifeLab-Uppsala for technical assistance; J. Clausen for help with the donkey samples; S. Rasmussen for computational assistance; J. N. MacLeod and T. Kalbfleisch for discussions involving the re-sequencing of the horse reference genome; and S. Sawyer for providing published ancient horse data. This work was supported by the Danish Council for Independent Research, Natural Sciences (FNU); the Danish National Research Foundation; the Novo Nordisk Foundation; the Lundbeck Foundation (R52-A5062); a Marie-Curie Career Integration grant (FP7 CIG-293845); the National Science Foundation ARC-0909456; National Science Foundation DBI-0906041; the Searle Scholars Program; King Saud University Distinguished Scientist Fellowship Program (DSFP); Natural Science and Engineering Research Council of Canada; the US National Science Foundation DMR-0923096; and a grant RC2 HG005598 from the National Human Genetics Research Institute (NHGRI). A.G. was supported by a Marie-Curie Intra-European Fellowship (FP7 IEF-299176). M.F. was supported by EMBO Long-Term Post-doctoral Fellowship (ALTF 229-2011). A.-S.M. was supported by a fellowship from the Swiss National Science Foundation (SNSF). Mi.S. was supported by the Lundbeck foundation (R82-5062).
Author information
Damian Szklarczyk & Jakob Vinther
Present address: Present addresses: Bioinformatics Group, Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland (D.S.); Departments of Earth Sciences and Biological Sciences, University of Bristol BS8 1UG, UK (Ja.V.).,
Ludovic Orlando, Aurélien Ginolhac and Guojie Zhang: These authors contributed equally to this work.
Authors and Affiliations
Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen K, Denmark,
Ludovic Orlando, Aurélien Ginolhac, Mikkel Schubert, Enrico Cappellini, Julia T. Vilstrup, Maanasa Raghavan, Thorfinn Korneliussen, Anna-Sapfo Malaspinas, Jesper Stenderup, Amhed M. V. Velazquez, Morten Rasmussen, Andaine Seguin-Orlando, Cecilie Mortensen, Kim Magnussen, Kristian Gregersen, Anders Krogh, M. Thomas P. Gilbert, Kurt Kjær & Eske Willerslev
Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, Shenzhen 518083, China,
Guojie Zhang, Xiaoli Wang, Jiumeng Min & Jun Wang
Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada,
Duane Froese
Department of Biology, The Bioinformatics Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark,
Anders Albrechtsen, Ida Moltke & Anders Krogh
Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA,
Mathias Stiller, James Cahill & Beth Shapiro
Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Lyngby, Denmark
Bent Petersen, Josef Vogt, Søren Brunak & Thomas Sicheritz-Ponten
Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA,
Ida Moltke
Department of Biology, Emory University, Atlanta, Georgia 30322, USA,
Philip L. F. Johnson
Department of Integrative Biology, University of California, Berkeley, California 94720, USA,
Matteo Fumagalli
Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark,
Damian Szklarczyk, Christian D. Kelstrup, Lars Juhl Jensen & Jesper V. Olsen
Jackson School of Geosciences, The University of Texas at Austin, 1 University Road, Austin, Texas 78712, USA,
Jakob Vinther
Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA,
Andrei Dolocan
Department of Tourism and Culture, Government of Yukon, Yukon Palaeontology Program, PO Box 2703 L2A, Whitehorse, Yukon Territory Y1A 2C6, Canada,
Grant D. Zazula
Danish National High-throughput DNA Sequencing Centre, University of Copenhagen, Øster Farimagsgade 2D, 1353 Copenhagen K, Denmark,
Andaine Seguin-Orlando, Cecilie Mortensen & Kim Magnussen
NABsys Inc, 60 Clifford Street, Providence, Rhode Island 02903, USA,
John F. Thompson
Archeology, University of Southampton, Avenue Campus, Highfield, Southampton SO17 1BF, UK,
Jacobo Weinstock
Zoological Museum, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
Kristian Gregersen
Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Box 8146 Dep, N-0033 Oslo, Norway,
Knut H. Røed
Département histoire de la Terre, UMR 5143 du CNRS, paléobiodiversité et paléoenvironnements, MNHN, CP 38, 8, rue Buffon, 75005 Paris, France,
Véra Eisenmann
Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden
Carl J. Rubin & Leif Andersson
Baker Institute for Animal Health, Cornell University, Ithaca, New York 14853, USA,
Donald C. Miller & Douglas F. Antczak
Center for Zoo and Wild Animal Health, Copenhagen Zoo, 2000 Frederiksberg, Denmark,
Mads F. Bertelsen
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2970 Hørsholm, Denmark
Søren Brunak & Thomas Sicheritz-Ponten
Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
Khaled A. S. Al-Rasheid
San Diego Zoo’s Institute for Conservation Research, Escondido, California 92027, USA,
Oliver Ryder
Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark,
John Mundy & Jun Wang
Department of Biology, The University of York, Wentworth Way, Heslington, York YO10 5DD, UK,
Michael Hofreiter
Departments of Integrative Biology and Statistics, University of California, Berkeley, Berkeley, California 94720, USA,
Rasmus Nielsen
King Abdulaziz University, Jeddah 21589, Saudi Arabia
Jun Wang
Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China,
Jun Wang
- Ludovic Orlando
Search author on:PubMed Google Scholar
- Aurélien Ginolhac
Search author on:PubMed Google Scholar
- Guojie Zhang
Search author on:PubMed Google Scholar
- Duane Froese
Search author on:PubMed Google Scholar
- Anders Albrechtsen
Search author on:PubMed Google Scholar
- Mathias Stiller
Search author on:PubMed Google Scholar
- Mikkel Schubert
Search author on:PubMed Google Scholar
- Enrico Cappellini
Search author on:PubMed Google Scholar
- Bent Petersen
Search author on:PubMed Google Scholar
- Ida Moltke
Search author on:PubMed Google Scholar
- Philip L. F. Johnson
Search author on:PubMed Google Scholar
- Matteo Fumagalli
Search author on:PubMed Google Scholar
- Julia T. Vilstrup
Search author on:PubMed Google Scholar
- Maanasa Raghavan
Search author on:PubMed Google Scholar
- Thorfinn Korneliussen
Search author on:PubMed Google Scholar
- Anna-Sapfo Malaspinas
Search author on:PubMed Google Scholar
- Josef Vogt
Search author on:PubMed Google Scholar
- Damian Szklarczyk
Search author on:PubMed Google Scholar
- Christian D. Kelstrup
Search author on:PubMed Google Scholar
- Jakob Vinther
Search author on:PubMed Google Scholar
- Andrei Dolocan
Search author on:PubMed Google Scholar
- Jesper Stenderup
Search author on:PubMed Google Scholar
- Amhed M. V. Velazquez
Search author on:PubMed Google Scholar
- James Cahill
Search author on:PubMed Google Scholar
- Morten Rasmussen
Search author on:PubMed Google Scholar
- Xiaoli Wang
Search author on:PubMed Google Scholar
- Jiumeng Min
Search author on:PubMed Google Scholar
- Grant D. Zazula
Search author on:PubMed Google Scholar
- Andaine Seguin-Orlando
Search author on:PubMed Google Scholar
- Cecilie Mortensen
Search author on:PubMed Google Scholar
- Kim Magnussen
Search author on:PubMed Google Scholar
- John F. Thompson
Search author on:PubMed Google Scholar
- Jacobo Weinstock
Search author on:PubMed Google Scholar
- Kristian Gregersen
Search author on:PubMed Google Scholar
- Knut H. Røed
Search author on:PubMed Google Scholar
- Véra Eisenmann
Search author on:PubMed Google Scholar
- Carl J. Rubin
Search author on:PubMed Google Scholar
- Donald C. Miller
Search author on:PubMed Google Scholar
- Douglas F. Antczak
Search author on:PubMed Google Scholar
- Mads F. Bertelsen
Search author on:PubMed Google Scholar
- Søren Brunak
Search author on:PubMed Google Scholar
- Khaled A. S. Al-Rasheid
Search author on:PubMed Google Scholar
- Oliver Ryder
Search author on:PubMed Google Scholar
- Leif Andersson
Search author on:PubMed Google Scholar
- John Mundy
Search author on:PubMed Google Scholar
- Anders Krogh
Search author on:PubMed Google Scholar
- M. Thomas P. Gilbert
Search author on:PubMed Google Scholar
- Kurt Kjær
Search author on:PubMed Google Scholar
- Thomas Sicheritz-Ponten
Search author on:PubMed Google Scholar
- Lars Juhl Jensen
Search author on:PubMed Google Scholar
- Jesper V. Olsen
Search author on:PubMed Google Scholar
- Michael Hofreiter
Search author on:PubMed Google Scholar
- Rasmus Nielsen
Search author on:PubMed Google Scholar
- Beth Shapiro
Search author on:PubMed Google Scholar
- Jun Wang
Search author on:PubMed Google Scholar
- Eske Willerslev
Search author on:PubMed Google Scholar
Contributions
L.O. and E.W. initially conceived and headed the project; G.Z. and Ju.W. headed research at BGI; L.O. and E.W. designed the experimental research project set-up, with input from B.S. and R.N.; D.F. and G.D.Z. provided the Thistle Creek specimen, stratigraphic context and morphological information, with input from K.K.; K.H.R., B.S., K.G., D.C.M., D.F.A., K.A.S.A.-R. and M.F.B. provided samples; L.O., J.T.V., Ma.R., M.H., C.M. and J.S. did ancient and modern DNA extractions and constructed Illumina DNA libraries for shotgun sequencing; Ja.W. did the independent replication in Oxford; Ma.S. did ancient DNA extractions and generated target enrichment sequence data; Ji.M. and X.W. did Illumina libraries on donkey extracts; K.M., C.M. and A.S.-O. performed Illumina sequencing for the Middle Pleistocene and the 43-kyr-old horse genomes, the five domestic horse genomes and the Przewalski’s horse genome at Copenhagen, with input from Mo.R.; Ji.M. and X.W. performed Illumina sequencing for the Middle Pleistocene and the donkey genomes at BGI; J.F.T. headed true Single DNA Molecule Sequencing of the Middle Pleistocene genome; A.G., B.P. and Mi.S. did the mapping analyses and generated genome alignments, with input from L.O. and A.K.; Jo.V. and T.S.-P. did the metagenomic analyses, with input from A.G., B.P., S.B. and L.O.; Jo.V. and T.S.-P. did theab initio prediction of the donkey genes and the identification of the Y chromosome scaffolds, with input from A.G. and Mi.S.; L.O., A.G. and P.L.F.J. did the damage analyses, with input from I.M.; A.G. did the functional SNP assignment; A.M.V.V. and L.O. did the PCA analyses, with input from O.R.; B.S. did the phylogenetic and Bayesian skyline reconstructions on mitochondrial data; Mi.S. did the phylogenetic and divergence dating based on nuclear data, with input from L.O.; A.G. did the PSMC analyses using data generated by C.J.R. and L.A.; L.O. and A.G. did the population divergence analyses, with input from J.C., R.N. and M.F.; L.O., A.G. and T.K. did the selection scans, with input from A.-S.M. and R.N.; A.A., I.M. and M.F. did the admixture analyses, with input from R.N.; L.O. and A.G. did the analysis of paralogues and structural variation; Ja.V. and A.D. did the amino-acid composition analyses; E.C., C.D.K., D.S., L.J.J. and J.V.O. did the proteomic analyses, with input from M.T.P.G. and A.M.V.V.; L.O. and V.E. performed the morphological analyses, with input from D.F. and G.D.Z.; L.O. and E.W. wrote the manuscript, with critical input from M.H., B.S., Jo.M. and all remaining authors.
Corresponding authors
Correspondence toLudovic Orlando,Jun Wang orEske Willerslev.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
This file contains Supplementary Text and Data, Supplementary Figures, Supplementary Tables and additional references (see Contents for details).This file was updated on 3 July 2013 to correctly display figure S1.3 (PDF 20068 kb)
Supplementary Figures
This file contains Supplementary Figures S6.8-S6.38, which show DNA fragmentation and nucleotide misincorporation patterns for mitochondrial reads from other ancient samples analyzed in this study. (PDF 2191 kb)
Supplementary Tables
This zipped file contains Supplementary Tables 4.2, 4.3, 4.4, 5.9, 11.3, 11.4, 11.7 and 12.8. (ZIP 10146 kb)
Rights and permissions
About this article
Cite this article
Orlando, L., Ginolhac, A., Zhang, G.et al. RecalibratingEquus evolution using the genome sequence of an early Middle Pleistocene horse.Nature499, 74–78 (2013). https://doi.org/10.1038/nature12323
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Koban culture genome-wide and archeological data open the bridge between Bronze and Iron Ages in the North Caucasus
- Fedor S. Sharko
- Eugenia S. Boulygina
- Artem V. Nedoluzhko
European Journal of Human Genetics (2024)
Molecular archaeological study of horse remains unearthed from Jiulongshan cemetery, Ningxia, China
- Chang Li
- Dawei Cai
- Jialong Guo
Asian Archaeology (2024)
Evolution of snow algae, from cosmopolitans to endemics, revealed by DNA analysis of ancient ice
- Takahiro Segawa
- Takahiro Yonezawa
- Nozomu Takeuchi
The ISME Journal (2023)
Comparing extraction method efficiency for high-throughput palaeoproteomic bone species identification
- Dorothea Mylopotamitaki
- Florian S. Harking
- Frido Welker
Scientific Reports (2023)
Characteristic of Przewalski horses population from Askania-Nova reserve based on genetic markers
- Adrianna D. Musiał
- Katarzyna Ropka-Molik
- Nataliya Yasynetska
Molecular Biology Reports (2023)