Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

RecalibratingEquus evolution using the genome sequence of an early Middle Pleistocene horse

Naturevolume 499pages74–78 (2013)Cite this article

Subjects

Abstract

The rich fossil record of equids has made them a model for evolutionary processes1. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560–780 thousand years before present (kyrbp)2,3. Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyrbp), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski’s horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that theEquus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0–4.5 million years before present (Myrbp), twice the conventionally accepted time to the most recent common ancestor of the genusEquus4,5. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski’s and domestic horse populations diverged 38–72 kyrbp, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski’s horse investigated. This supports the contention that Przewalski’s horses represent the last surviving wild horse population6. We find similar levels of genetic variation among Przewalski’s and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski’s horse. Such regions could correspond to loci selected early during domestication.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The early Middle Pleistocene horse metapodial from Thistle Creek (TC).
Figure 2: Amino acid, protein and DNA preservation of the Thistle Creek horse bone.
Figure 3: Horse phylogenetic relationships and population divergence times.
Figure 4: Horse demographic history.

Similar content being viewed by others

Accession codes

Accessions

Sequence Read Archive

Data deposits

All sequence data have been submitted to Sequence Read Archive under accession numberSRA082086 and are available for download, together with final BAM and VCF files,de novo donkey scaffolds, and proteomic data athttp://geogenetics.ku.dk/publications/middle-pleistocene-omics.

References

  1. Franzen, J. L.The Rise of Horses: 55 Million Years of Evolution (Johns Hopkins Univ. Press, 2010)

    Google Scholar 

  2. Froese, D. G., Westgate, J. A., Reyes, A. V., Enkin, R. J. & Preece, S. J. Ancient permafrost and a future, warmer Arctic.Science321, 1648 (2008)

    Article CAS ADS  Google Scholar 

  3. Westgate, J. A. et al. Gold Run tephra: A Middle Pleistocene stratigraphic and paleoenvironmental marker across west-central Yukon Territory, Canada.Can. J. Earth Sci.46, 465–478 (2009)

    Article  Google Scholar 

  4. Eisenmann, V. Origins, dispersals, and migrations ofEquus (Mammalia, Perissofactyla).Courier Forschungsintitut Senckenberg153, 161–170 (1992)

    Google Scholar 

  5. Forsten, A. Mitochondrial-DNA timetable and the evolution ofEquus: Comparison of molecular and paleontological evidence.Ann. Zool. Fenn.28, 301–309 (1992)

    Google Scholar 

  6. Goto, H. et al. A massively parallel sequencing approach uncovers ancient origins and high genetic variability of endangered Przewalski’s horses.Genome Biol. Evol.3, 1096–1106 (2011)

    Article  Google Scholar 

  7. Reyes, A. V., Froese, D. G. & Jensen, B. J. Response of permafrost to last interglacial warming: field evidence from non-glaciated Yukon and Alaska.Quat. Sci. Rev.29, 3256–3274 (2010)

    Article ADS  Google Scholar 

  8. Orlando, L. et al. True single-molecule DNA sequencing of a Pleistocene horse bone.Genet. Res.21, 1705–1719 (2011)

    Article CAS  Google Scholar 

  9. Lindahl, T. Instability and decay of the primary structure of DNA.Nature362, 709–715 (1993)

    Article CAS ADS  Google Scholar 

  10. Willerslev, E. et al. Ancient biomolecules from deep ice cores reveal a forested southern Greenland.Science317, 111–114 (2007)

    Article CAS ADS  Google Scholar 

  11. Miller, W. et al. Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change.Proc. Natl Acad. Sci. USA109, E2382–E2390 (2012)

    Article CAS  Google Scholar 

  12. Cappellini, E. et al. Proteomic analysis of a pleistocene mammoth femur reveals more than one hundred ancient bone proteins.J. Proteome Res.11, 917–926 (2012)

    Article CAS  Google Scholar 

  13. Ginolhac, A. et al. Improving the performance of True Single Molecule Sequencing for ancient DNA.BMC Genomics13, 177 (2012)

    Article CAS  Google Scholar 

  14. Rasmussen, M. et al. Ancient human genome sequence of an extinct Palaeo-Eskimo.Nature463, 757–762 (2010)

    Article CAS ADS  Google Scholar 

  15. Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual.Science338, 222–226 (2012)

    Article CAS ADS  Google Scholar 

  16. van Doorn, N. L., Wilson, J., Hollund, H., Soressi, M. & Collins, M. J. Site-specific deamidation of glutamine: a new marker of bone collagen deterioration.Rapid Commun. Mass Spectrom.26, 2319–2327 (2012)

    Article CAS ADS  Google Scholar 

  17. Vilstrup, J. T. et al. Mitochondrial phylogenomics of modern and ancient equids.PLoS ONE8, e55950 (2013)

    Article CAS ADS  Google Scholar 

  18. McFadden, B. J. & Carranza-Castaneda, O. Cranium ofDinohippus mexicanus (Mammalia Equidae) from the early Pliocene (latest Hemphillian) of central Mexico and the origin ofEquus.Bull. Florida Museum Nat..History43, 163–185 (2002)

    Google Scholar 

  19. Weinstock, J. et al. Evolution, systematics, and phylogeography of Pleistocene horses in the new world: a molecular perspective.PLoS Biol.3, e241 (2005)

    Article  Google Scholar 

  20. Green, R. E. et al. A draft sequence of the Neandertal genome.Science328, 710–722 (2010)

    Article CAS ADS  Google Scholar 

  21. Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences.Nature475, 493–496 (2011)

    Article CAS  Google Scholar 

  22. Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans.Nature479, 359–364 (2011)

    Article CAS ADS  Google Scholar 

  23. International Union for Conservation of Nature. IUCN Red List of Threatened Species, Version 2010.1,http://www.iucnredlist.org (downloaded 11 March 2010)

  24. Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia.Nature468, 1053–1060 (2010)

    Article CAS ADS  Google Scholar 

  25. Bowling, A. T. et al. Genetic variation in Przewalski’s horses, with special focus on the last wild caught mare, 231 Orlitza III.Cytogenet. Genome Res.102, 226–234 (2003)

    Article CAS  Google Scholar 

  26. Wade, C. M. et al. Genome sequence, comparative analysis, and population genetics of the domestic horse.Science326, 865–867 (2009)

    Article CAS ADS  Google Scholar 

  27. Allentoft, M. E. et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils.Proc. R. Soc. Lond. B279, 4724–4733 (2012)

    Article CAS  Google Scholar 

  28. Kelstrup, C. D., Young, C., Lavallee, R., Nielsen, M. L. & Olsen, J. V. Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer.J. Proteome Res.11, 3487–3497 (2012)

    Article CAS  Google Scholar 

  29. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.Bioinformatics25, 1754–1760 (2009)

    Article CAS  Google Scholar 

  30. Orlando, L. et al. Revising the recent evolutionary history of equids using ancient DNA.Proc. Natl Acad. Sci. USA106, 21754–21759 (2009)

    Article CAS ADS  Google Scholar 

  31. Rohland, N. & Hofreiter, M. Ancient DNA extraction from bones and teeth.Nature Protocols2, 1756–1762 (2007)

    Article CAS  Google Scholar 

  32. Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing.Cold Spring Harb. Protoc..6,http://dx.doi.org/10.1101/pdb.prot5448 (2010)

  33. Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-readde novo assembler.GigaScience1, 18 (2012)

    Article  Google Scholar 

  34. Stanke, M., Steinkamp, R., Waack, S. & Morgenstern, B. AUGUSTUS: a web server for gene finding in eukaryotes.Nucleic Acids Res.32, W309–W312 (2004)

    Article CAS  Google Scholar 

  35. Carlton, J. M. et al. Draft genome sequence of the sexually transmitted pathogenTrichonomas vaginalis.Science315, 207–212 (2007)

    Article ADS  Google Scholar 

  36. Li, H. & Durbin, R. R. Fast and accurate long-read alignment with Burrows-Wheeler transform.Bioinformatics26, 589–595 (2010)

    Article  Google Scholar 

  37. Li, H. et al. The Sequence alignment/map (SAM) format and SAMtools.Bioinformatics25, 2078–2079 (2009)

    Article  Google Scholar 

  38. McCue, M. E. et al. A high density SNP array for the domestic horse and extant Perissodactyla: utility for association mapping, genetic diversity, and phylogeny studies.PLoS Genet.8, e1002451 (2012)

    Article CAS  Google Scholar 

  39. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses.Am. J. Hum. Genet.81, 559–575 (2007)

    Article CAS  Google Scholar 

  40. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis.PLoS Genet.2, e190 (2006)

    Article  Google Scholar 

  41. R Development Core Team. A language and environment for statistical computing,http://www.R-project.org (R Foundation for Statistical Computing, 2011)

  42. McLaren, W. et al. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor.Bioinformatics26, 2069–2070 (2010)

    Article CAS  Google Scholar 

  43. Smith, C. I., Chamberlain, A. T., Riley, M. S., Stringer, C. & Collins, M. J. The thermal history of human fossils and the likelihood of successful DNA amplification.J. Hum. Evol.45, 203–217 (2003)

    Article  Google Scholar 

  44. Ginolhac, A., Rasmussen, M., Gilbert, T. M., Willerslev, E. & Orlando, L. mapDamage: testing for damage patterns in ancient DNA sequences.Bioinformatics27, 2153–2155 (2011)

    Article CAS  Google Scholar 

  45. Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal.Proc. Natl Acad. Sci. USA104, 14616–14621 (2007)

    Article CAS ADS  Google Scholar 

  46. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.Nature Biotechnol.26, 1367–1372 (2008)

    Article CAS  Google Scholar 

  47. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment.J. Proteome Res.10, 1794–1805 (2011)

    Article CAS ADS  Google Scholar 

  48. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Nucleic Acids Res.30, 3059–3066 (2002)

    Article CAS  Google Scholar 

  49. Katoh, K. & Toh, H. Recent developments in the MAFFT multiple sequence alignment program.Brief. Bioinform.9, 286–298 (2008)

    Article CAS  Google Scholar 

  50. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Bioinformatics22, 2688–2690 (2006)

    Article CAS  Google Scholar 

  51. Stamatakis, A. et al. RAxML-Light: a tool for computing Terabyte phylogenies.Bioinformatics28, 2064–2066 (2012)

    Article CAS  Google Scholar 

  52. Sanderson, M. J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock.Bioinformatics19, 301–302 (2003)

    Article CAS  Google Scholar 

  53. Shimodaira, H. & Hasegawa, M. CONSEL: for assessing the confidence of phylogenetic tree selection.Bioinformatics17, 1246–1247 (2001)

    Article CAS  Google Scholar 

  54. Lippold, S., Matzke, N. J., Reissmann, M. & Hofreiter, M. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication.BMC Evol. Biol.11, 328 (2011)

    Article CAS  Google Scholar 

  55. Achilli, A. et al. Mitochondrial genomes from modern horses reveal the major haplogroups that underwent domestication.Proc. Natl Acad. Sci. USA109, 2449–2454 (2012)

    Article CAS ADS  Google Scholar 

  56. Warmuth, V. et al. Reconstructing the origin and spread of horse domestication in the Eurasian steppe.Proc. Natl Acad. Sci. USA109, 8202–8206 (2012)

    Article CAS ADS  Google Scholar 

  57. Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees.BMC Evol. Biol.7, 214 (2007)

    Article  Google Scholar 

  58. Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7.Mol. Biol. Evol.29, 1969–1973 (2012)

    Article CAS  Google Scholar 

  59. Rambaut, A. & Drummond, A. J. Tracer v1. 5,http://beast.bio.ed.ac.uk/Tracer (2009)

  60. Hudson, R. R. Generating samples under a Wright-Fisher neutral model of genetic variation.Bioinformatics18, 337–338 (2002)

    Article CAS  Google Scholar 

  61. Zhang, Z.Computational Molecular Evolution (Oxford Univ. Press, 2006)

    Google Scholar 

  62. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources.Nature Protocols4, 44–57 (2009)

    Article CAS  Google Scholar 

  63. Nielsen, R. Molecular signatures of natural selection.Annu. Rev. Genet.39, 197–218 (2005)

    Article CAS  Google Scholar 

  64. Busing, F. M. T. A., Meijer, E. & Van Der Leeden, R. Delete-m Jackknife for Unequalm.Stat. Comput.9, 3–8 (1999)

    Article  Google Scholar 

  65. Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. J. & McInerney, J. O. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified.BMC Evol. Biol.6, 29 (2006)

    Article  Google Scholar 

  66. Guindon, S. et al. New algorithms and methods to estimate Maximum-Likelihood phylogenies: assessing the performance of PhyML 3.0.Syst. Biol.59, 307–321 (2010)

    Article CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Brand, the laboratory technicians at the Danish National High-throughput DNA Sequencing Centre and the Illumina sequencing platform at SciLifeLab-Uppsala for technical assistance; J. Clausen for help with the donkey samples; S. Rasmussen for computational assistance; J. N. MacLeod and T. Kalbfleisch for discussions involving the re-sequencing of the horse reference genome; and S. Sawyer for providing published ancient horse data. This work was supported by the Danish Council for Independent Research, Natural Sciences (FNU); the Danish National Research Foundation; the Novo Nordisk Foundation; the Lundbeck Foundation (R52-A5062); a Marie-Curie Career Integration grant (FP7 CIG-293845); the National Science Foundation ARC-0909456; National Science Foundation DBI-0906041; the Searle Scholars Program; King Saud University Distinguished Scientist Fellowship Program (DSFP); Natural Science and Engineering Research Council of Canada; the US National Science Foundation DMR-0923096; and a grant RC2 HG005598 from the National Human Genetics Research Institute (NHGRI). A.G. was supported by a Marie-Curie Intra-European Fellowship (FP7 IEF-299176). M.F. was supported by EMBO Long-Term Post-doctoral Fellowship (ALTF 229-2011). A.-S.M. was supported by a fellowship from the Swiss National Science Foundation (SNSF). Mi.S. was supported by the Lundbeck foundation (R82-5062).

Author information

Author notes
  1. Damian Szklarczyk & Jakob Vinther

    Present address: Present addresses: Bioinformatics Group, Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland (D.S.); Departments of Earth Sciences and Biological Sciences, University of Bristol BS8 1UG, UK (Ja.V.).,

  2. Ludovic Orlando, Aurélien Ginolhac and Guojie Zhang: These authors contributed equally to this work.

Authors and Affiliations

  1. Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen K, Denmark,

    Ludovic Orlando, Aurélien Ginolhac, Mikkel Schubert, Enrico Cappellini, Julia T. Vilstrup, Maanasa Raghavan, Thorfinn Korneliussen, Anna-Sapfo Malaspinas, Jesper Stenderup, Amhed M. V. Velazquez, Morten Rasmussen, Andaine Seguin-Orlando, Cecilie Mortensen, Kim Magnussen, Kristian Gregersen, Anders Krogh, M. Thomas P. Gilbert, Kurt Kjær & Eske Willerslev

  2. Shenzhen Key Laboratory of Transomics Biotechnologies, BGI-Shenzhen, Shenzhen 518083, China,

    Guojie Zhang, Xiaoli Wang, Jiumeng Min & Jun Wang

  3. Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada,

    Duane Froese

  4. Department of Biology, The Bioinformatics Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark,

    Anders Albrechtsen, Ida Moltke & Anders Krogh

  5. Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95064, USA,

    Mathias Stiller, James Cahill & Beth Shapiro

  6. Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Lyngby, Denmark

    Bent Petersen, Josef Vogt, Søren Brunak & Thomas Sicheritz-Ponten

  7. Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA,

    Ida Moltke

  8. Department of Biology, Emory University, Atlanta, Georgia 30322, USA,

    Philip L. F. Johnson

  9. Department of Integrative Biology, University of California, Berkeley, California 94720, USA,

    Matteo Fumagalli

  10. Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark,

    Damian Szklarczyk, Christian D. Kelstrup, Lars Juhl Jensen & Jesper V. Olsen

  11. Jackson School of Geosciences, The University of Texas at Austin, 1 University Road, Austin, Texas 78712, USA,

    Jakob Vinther

  12. Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA,

    Andrei Dolocan

  13. Department of Tourism and Culture, Government of Yukon, Yukon Palaeontology Program, PO Box 2703 L2A, Whitehorse, Yukon Territory Y1A 2C6, Canada,

    Grant D. Zazula

  14. Danish National High-throughput DNA Sequencing Centre, University of Copenhagen, Øster Farimagsgade 2D, 1353 Copenhagen K, Denmark,

    Andaine Seguin-Orlando, Cecilie Mortensen & Kim Magnussen

  15. NABsys Inc, 60 Clifford Street, Providence, Rhode Island 02903, USA,

    John F. Thompson

  16. Archeology, University of Southampton, Avenue Campus, Highfield, Southampton SO17 1BF, UK,

    Jacobo Weinstock

  17. Zoological Museum, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark

    Kristian Gregersen

  18. Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Box 8146 Dep, N-0033 Oslo, Norway,

    Knut H. Røed

  19. Département histoire de la Terre, UMR 5143 du CNRS, paléobiodiversité et paléoenvironnements, MNHN, CP 38, 8, rue Buffon, 75005 Paris, France,

    Véra Eisenmann

  20. Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE-751 23 Uppsala, Sweden

    Carl J. Rubin & Leif Andersson

  21. Baker Institute for Animal Health, Cornell University, Ithaca, New York 14853, USA,

    Donald C. Miller & Douglas F. Antczak

  22. Center for Zoo and Wild Animal Health, Copenhagen Zoo, 2000 Frederiksberg, Denmark,

    Mads F. Bertelsen

  23. Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2970 Hørsholm, Denmark

    Søren Brunak & Thomas Sicheritz-Ponten

  24. Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

    Khaled A. S. Al-Rasheid

  25. San Diego Zoo’s Institute for Conservation Research, Escondido, California 92027, USA,

    Oliver Ryder

  26. Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark,

    John Mundy & Jun Wang

  27. Department of Biology, The University of York, Wentworth Way, Heslington, York YO10 5DD, UK,

    Michael Hofreiter

  28. Departments of Integrative Biology and Statistics, University of California, Berkeley, Berkeley, California 94720, USA,

    Rasmus Nielsen

  29. King Abdulaziz University, Jeddah 21589, Saudi Arabia

    Jun Wang

  30. Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China,

    Jun Wang

Authors
  1. Ludovic Orlando
  2. Aurélien Ginolhac
  3. Guojie Zhang
  4. Duane Froese
  5. Anders Albrechtsen
  6. Mathias Stiller
  7. Mikkel Schubert
  8. Enrico Cappellini
  9. Bent Petersen
  10. Ida Moltke
  11. Philip L. F. Johnson
  12. Matteo Fumagalli
  13. Julia T. Vilstrup
  14. Maanasa Raghavan
  15. Thorfinn Korneliussen
  16. Anna-Sapfo Malaspinas
  17. Josef Vogt
  18. Damian Szklarczyk
  19. Christian D. Kelstrup
  20. Jakob Vinther
  21. Andrei Dolocan
  22. Jesper Stenderup
  23. Amhed M. V. Velazquez
  24. James Cahill
  25. Morten Rasmussen
  26. Xiaoli Wang
  27. Jiumeng Min
  28. Grant D. Zazula
  29. Andaine Seguin-Orlando
  30. Cecilie Mortensen
  31. Kim Magnussen
  32. John F. Thompson
  33. Jacobo Weinstock
  34. Kristian Gregersen
  35. Knut H. Røed
  36. Véra Eisenmann
  37. Carl J. Rubin
  38. Donald C. Miller
  39. Douglas F. Antczak
  40. Mads F. Bertelsen
  41. Søren Brunak
  42. Khaled A. S. Al-Rasheid
  43. Oliver Ryder
  44. Leif Andersson
  45. John Mundy
  46. Anders Krogh
  47. M. Thomas P. Gilbert
  48. Kurt Kjær
  49. Thomas Sicheritz-Ponten
  50. Lars Juhl Jensen
  51. Jesper V. Olsen
  52. Michael Hofreiter
  53. Rasmus Nielsen
  54. Beth Shapiro
  55. Jun Wang
  56. Eske Willerslev

Contributions

L.O. and E.W. initially conceived and headed the project; G.Z. and Ju.W. headed research at BGI; L.O. and E.W. designed the experimental research project set-up, with input from B.S. and R.N.; D.F. and G.D.Z. provided the Thistle Creek specimen, stratigraphic context and morphological information, with input from K.K.; K.H.R., B.S., K.G., D.C.M., D.F.A., K.A.S.A.-R. and M.F.B. provided samples; L.O., J.T.V., Ma.R., M.H., C.M. and J.S. did ancient and modern DNA extractions and constructed Illumina DNA libraries for shotgun sequencing; Ja.W. did the independent replication in Oxford; Ma.S. did ancient DNA extractions and generated target enrichment sequence data; Ji.M. and X.W. did Illumina libraries on donkey extracts; K.M., C.M. and A.S.-O. performed Illumina sequencing for the Middle Pleistocene and the 43-kyr-old horse genomes, the five domestic horse genomes and the Przewalski’s horse genome at Copenhagen, with input from Mo.R.; Ji.M. and X.W. performed Illumina sequencing for the Middle Pleistocene and the donkey genomes at BGI; J.F.T. headed true Single DNA Molecule Sequencing of the Middle Pleistocene genome; A.G., B.P. and Mi.S. did the mapping analyses and generated genome alignments, with input from L.O. and A.K.; Jo.V. and T.S.-P. did the metagenomic analyses, with input from A.G., B.P., S.B. and L.O.; Jo.V. and T.S.-P. did theab initio prediction of the donkey genes and the identification of the Y chromosome scaffolds, with input from A.G. and Mi.S.; L.O., A.G. and P.L.F.J. did the damage analyses, with input from I.M.; A.G. did the functional SNP assignment; A.M.V.V. and L.O. did the PCA analyses, with input from O.R.; B.S. did the phylogenetic and Bayesian skyline reconstructions on mitochondrial data; Mi.S. did the phylogenetic and divergence dating based on nuclear data, with input from L.O.; A.G. did the PSMC analyses using data generated by C.J.R. and L.A.; L.O. and A.G. did the population divergence analyses, with input from J.C., R.N. and M.F.; L.O., A.G. and T.K. did the selection scans, with input from A.-S.M. and R.N.; A.A., I.M. and M.F. did the admixture analyses, with input from R.N.; L.O. and A.G. did the analysis of paralogues and structural variation; Ja.V. and A.D. did the amino-acid composition analyses; E.C., C.D.K., D.S., L.J.J. and J.V.O. did the proteomic analyses, with input from M.T.P.G. and A.M.V.V.; L.O. and V.E. performed the morphological analyses, with input from D.F. and G.D.Z.; L.O. and E.W. wrote the manuscript, with critical input from M.H., B.S., Jo.M. and all remaining authors.

Corresponding authors

Correspondence toLudovic Orlando,Jun Wang orEske Willerslev.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures, Supplementary Tables and additional references (see Contents for details).This file was updated on 3 July 2013 to correctly display figure S1.3 (PDF 20068 kb)

Supplementary Figures

This file contains Supplementary Figures S6.8-S6.38, which show DNA fragmentation and nucleotide misincorporation patterns for mitochondrial reads from other ancient samples analyzed in this study. (PDF 2191 kb)

Supplementary Tables

This zipped file contains Supplementary Tables 4.2, 4.3, 4.4, 5.9, 11.3, 11.4, 11.7 and 12.8. (ZIP 10146 kb)

Rights and permissions

About this article

Cite this article

Orlando, L., Ginolhac, A., Zhang, G.et al. RecalibratingEquus evolution using the genome sequence of an early Middle Pleistocene horse.Nature499, 74–78 (2013). https://doi.org/10.1038/nature12323

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

Old horse DNA makes sense ofEquus lineage

A low-coverage draft genome sequence has been obtained from a horse bone recovered from a permafrost site in the Yukon Territory, Canada, dated to around 560,000–780,000 years before present. This is by far the earliest genome sequence so far determined. The data were compared to draft genome sequences for a Late Pleistocene horse, those of five contemporary domestic horse breeds, a Przewalski's horse and a donkey. Comparative genomics suggest that theEquus lineage that gave rise to all contemporary horses, zebras and donkeys originated about 4.0–4.5 million years ago — much earlier than previously suspected. The data support the contention that Przewalski's horses — an endangered subspecies native to the Mongolian steppes — represent the last surviving wild horse population.

Associated content

Towards a million-year-old genome

  • Craig D. Millar
  • David M. Lambert
NatureNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp