- Article
- Published:
Experimental one-way quantum computing
- P. Walther1,
- K. J. Resch1,
- T. Rudolph2,
- E. Schenck1,8,
- H. Weinfurter3,4,
- V. Vedral1,5,6,
- M. Aspelmeyer1 &
- …
- A. Zeilinger1,7
Naturevolume 434, pages169–176 (2005)Cite this article
18kAccesses
1160Citations
24Altmetric
Abstract
Standard quantum computation is based on sequences of unitary quantum logic gates that process qubits. The one-way quantum computer proposed by Raussendorf and Briegel is entirely different. It has changed our understanding of the requirements for quantum computation and more generally how we think about quantum physics. This new model requires qubits to be initialized in a highly entangled cluster state. From this point, the quantum computation proceeds by a sequence of single-qubit measurements with classical feedforward of their outcomes. Because of the essential role of measurement, a one-way quantum computer is irreversible. In the one-way quantum computer, the order and choices of measurements determine the algorithm computed. We have experimentally realized four-qubit cluster states encoded into the polarization state of four photons. We characterize the quantum state fully by implementing experimental four-qubit quantum state tomography. Using this cluster state, we demonstrate the feasibility of one-way quantum computing through a universal set of one- and two-qubit operations. Finally, our implementation of Grover's search algorithm demonstrates that one-way quantum computation is ideally suited for such tasks.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
¥ 4,980
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Deutsch, D. & Ekert, E. Quantum computation.Phys. World11, 47–52 (1998)
Braunstein, S. L. & Lo, H.-K. (eds) Experimental proposals for quantum computation.Fortschr. Phys.48 (special focus issue 9–11), 767–1138 (2000).
Shor, P. W. inProc. 35th Annu. Symp. Foundations of Computer Science (ed. Goldwasser, S.) 124–134 (IEEE Computer Society Press, Los Alamitos, 1994)
Grover, L. K. Quantum mechanics helps in search for a needle in a haystack.Phys. Rev. Lett.79, 325–328 (1997)
Bennett, C. & DiVicenzo, D. Quantum information and computation.Nature404, 247–255 (2000)
Ekert, A. & Josza, R. Quantum algorithms: entanglement enhanced information processing.Phil. Trans. R. Soc. Lond. A356, 1769–1782 (1998)
Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations.Nature402, 390–393 (1999)
Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics.Nature409, 46–52 (2001)
Linden, N. & Popescu, S. Good dynamics versus bad kinematics: Is entanglement needed for quantum computation?Phys. Rev. Lett.87, 047901 (2001)
Josza, R. & Linden, N. On the role of the entanglement in quantum computational speed-up.Proc. R. Soc. Lond. A459, 2011–2032 (2003)
Nielsen, M. A. Quantum computation by measurement and quantum memory.Phys. Lett. A308, 96–100 (2003)
Biham, E., Brassard, G., Kenigsberg, D. & Mor, T. Quantum computing without entanglement.Theor. Comput. Sci.320, 15–33 (2004)
Briegel, H. J. & Raussendorf, R. Persistent entanglement in arrays of interacting particles.Phys. Rev. Lett.86, 910–913 (2001)
Raussendorf, R. & Briegel, H. J. A one-way quantum computer.Phys. Rev. Lett.86, 5188–5191 (2001)
Raussendorf, R. & Briegel, H. J. Computational model underlying the one-way quantum computer.Quant. Inform. Comput.2, 344–386 (2002)
Raussendorf, R., Brown, D. E. & Briegel, H. J. The one-way quantum computer—a non-network model of quantum computation.J. Mod. Opt.49, 1299–1306 (2002)
Raussendorf, R., Brown, D. E. & Briegel, H. J. Measurement-based quantum computation on cluster states.Phys. Rev. A68, 022312 (2003)
Nielsen, M. & Dawson, C. M. Fault-tolerant quantum computation with cluster states. Preprint athttp://arXiv.org/quant-ph/0405134 (2004).
Mandel, O. et al. Controlled collisions for multiparticle entanglement of optically trapped ions.Nature425, 937–940 (2003)
O'Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-not gate.Nature426, 264–267 (2003)
Pittman, T. B., Fitch, M. J., Jacobs, B. C. & Franson, J. D. Experimental controlled-not logic gate of single photons in the coincidence basis.Phys. Rev. A.68, 032316 (2003)
Gasparoni, S., Pan, J.-W., Walther, P., Rudolph, T. & Zeilinger, A. Realization of a photonic controlled-NOT gate sufficient for quantum computation.Phys. Rev. Lett.92, 020504 (2004)
Sanaka, K., Jennewein, T., Pan, J.-W., Resch, K. & Zeilinger, A. Experimental nonlinear sign-shift for linear optics quantum computation.Phys. Rev. Lett.92, 017902 (2004)
Nielsen, M. A. Optical quantum computation using cluster states.Phys. Rev. Lett.93, 040503 (2004)
Brown, D. E. & Rudolph, T. Efficient linear optical quantum computation. Preprint athttp://arXiv.org/quant-ph/0405157 (2004).
Walther, P. et al. De Broglie wavelength of a non-local four-photon state.Nature429, 158–161 (2004)
Hein, M., Eisert, J. & Briegel, H.-J. Multi-party entanglement in graph states.Phys. Rev. A69, 062311 (2004)
Roos, C. F. et al. Control and measurement of three-qubit entangled states.Science304, 1478–1480 (2004)
Weinstein, Y. et al. Quantum process tomography of the quantum Fourier transform.J. Chem. Phys.121, 6117–6133 (2004)
Hradil, Z. Quantum-state estimation.Phys. Rev. A55, R1561–R1564 (1997)
Banaszek, K., Ariano, A., Paris, M. & Sacchi, M. Maximum-likelihood estimation of the density matrix.Phys. Rev. A61, 010304 (1999)
James, D., Kwiat, P., Munro, W. & White, A. Measurement of qubits.Phys. Rev. A64, 052312 (2001)
Toth, G. & Guehne, O. Detecting genuine multipartite entanglement with two local measurements. Preprint athttp://arXiv.org/quant-ph/0405165 (2004).
Dür, W. & Briegel, H.-J. Stability of macroscopic entanglement under decoherence.Phys. Rev. Lett.92, 180403 (2004)
Greenberger, D. M., Horne, M. A. & Zeilinger, A. inBell's Theorem, Quantum Theory and Concepts of the Universe (ed. Kafatos, M.) (Kluwer, Dordrecht, 1989)
Zeilinger, A., Horne, M. & Greenberger, D. inSqueezed States and Quantum Uncertainty (eds Han, D., Kim, Y. S. & Zachary, W. W.) (NASA Conference Publication 3135, NASA, College Park, 1992)
Dür, W., Vidal, G. & Cirac, J. I. Three qubits can be entangled in two inequivalent ways.Phys. Rev. A62, 62314–62325 (2000)
SenDe, A., Sen, U., Wiesniak, M., Kaszlikowski, D. & Zukowski, M. Multi-qubit W states lead to stronger nonclassicality than Greenberger-Horne-Zeilinger states.Phys. Rev. A68, 623306 (2003)
Horodecki, M., Horodecki, P. & Horodecki, R. Separability of mixed states: necessary and sufficient conditions.Phys. Lett. A223, 1–8 (1996)
Peres, A. Separability criterion for density matrices.Phys. Rev. Lett.77, 1413–1415 (1996)
Chuang, I. L. & Nielsen, M. A. Prescription for experimental determination of the dynamics of a quantum black box.J. Mod. Opt.44, 2455–2467 (1997)
Poyatos, J. F., Cirac, J. I. & Zoller, P. Complete characterization of a quantum process: the two-bit quantum gate.Phys. Rev. Lett.78, 390–393 (1997)
Schumacher, B. Quantum coding.Phys. Rev. A51, 2738–2747 (1995)
Coffman, V., Kundu, J. & Wootters, W. K. Distributed entanglement.Phys. Rev. A61, 052306 (2000)
Horodecki, R., Horodecki, P. & Horodecki, M. Violating Bell inequality by mixed spin-1/2 states: necessary and sufficient condition.Phys. Lett. A200, 340–344 (1995)
Ahn, J., Weinacht, T. C. & Bucksbaum, P. H. Information storage and retrieval through quantum phase.Science287, 463–465 (2000)
Bhattacharya, N., van Linden van den Heuvell, H. B. & Spreeuw, R. J. C. Implementation of quantum search algorithm using classical Fourier optics.Phys. Rev. Lett.88, 137901 (2002)
Chuang, I. L., Gershenfeld, N. & Kubinec, M. Experimental implementation of a fast quantum searching.Phys. Rev. Lett.80, 3408–3411 (1997)
Jones, J. A., Mosca, M. & Hansen, R. H. Implementation of a quantum search algorithm on a quantum computer.Nature393, 344–346 (1998)
Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs.Phys. Rev. Lett.75, 4337–4342 (1995)
Acknowledgements
We thank H. J. Briegel, D. Browne and M. Zukowski for theoretical discussions, and C. Först for assistance with graphics. This work was supported by the Austrian Science Foundation (FWF), NSERC, the European Commission under project RAMBOQ, and by the Alexander von Humboldt Foundation.
Author information
Authors and Affiliations
Institute of Experimental Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
P. Walther, K. J. Resch, E. Schenck, V. Vedral, M. Aspelmeyer & A. Zeilinger
QOLS, Blackett Laboratory, Imperial College London, SW7 2BW, London, UK
T. Rudolph
Department of Physics, Ludwig Maximilians University, D-80799, Munich, Germany
H. Weinfurter
Max Planck Institute for Quantum Optics, D-85741, Garching, Germany
H. Weinfurter
The Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, 1090, Vienna, Austria
V. Vedral
The School of Physics and Astronomy, University of Leeds, LS2 9JT, Leeds, UK
V. Vedral
IQOQI, Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090, Vienna, Austria
A. Zeilinger
Ecole normale supérieure, 45, rue d'Ulm, 75005, Paris, France
E. Schenck
- P. Walther
Search author on:PubMed Google Scholar
- K. J. Resch
Search author on:PubMed Google Scholar
- T. Rudolph
Search author on:PubMed Google Scholar
- E. Schenck
Search author on:PubMed Google Scholar
- H. Weinfurter
Search author on:PubMed Google Scholar
- V. Vedral
Search author on:PubMed Google Scholar
- M. Aspelmeyer
Search author on:PubMed Google Scholar
- A. Zeilinger
Search author on:PubMed Google Scholar
Corresponding authors
Correspondence toP. Walther orA. Zeilinger.
Ethics declarations
Competing interests
The authors declare that they have no competing financial interests.
Supplementary information
Supplementary Tables 1-2
The state fidelities of the output qubits from one-qubit and two-qubit quantum computations. (DOC 189 kb)
Rights and permissions
About this article
Cite this article
Walther, P., Resch, K., Rudolph, T.et al. Experimental one-way quantum computing.Nature434, 169–176 (2005). https://doi.org/10.1038/nature03347
Received:
Accepted:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Fusion of deterministically generated photonic graph states
- Philip Thomas
- Leonardo Ruscio
- Gerhard Rempe
Nature (2024)
Purcell-enhanced single photons at telecom wavelengths from a quantum dot in a photonic crystal cavity
- Catherine L. Phillips
- Alistair J. Brash
- A. Mark Fox
Scientific Reports (2024)
Quantifying Entanglement by Purity in a Cavity-Magnon System
- Noureddine Benrass
- Abdelkader Hidki
- Mostafa Nassik
Brazilian Journal of Physics (2024)
Strong second-harmonic generation by sublattice polarization in non-uniformly strained monolayer graphene
- Kunze Lu
- Manlin Luo
- Donguk Nam
Nature Communications (2023)
Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds
- Nadia O. Antoniadis
- Mark R. Hogg
- Richard J. Warburton
Nature Communications (2023)


