Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

Experimental one-way quantum computing

Naturevolume 434pages169–176 (2005)Cite this article

Abstract

Standard quantum computation is based on sequences of unitary quantum logic gates that process qubits. The one-way quantum computer proposed by Raussendorf and Briegel is entirely different. It has changed our understanding of the requirements for quantum computation and more generally how we think about quantum physics. This new model requires qubits to be initialized in a highly entangled cluster state. From this point, the quantum computation proceeds by a sequence of single-qubit measurements with classical feedforward of their outcomes. Because of the essential role of measurement, a one-way quantum computer is irreversible. In the one-way quantum computer, the order and choices of measurements determine the algorithm computed. We have experimentally realized four-qubit cluster states encoded into the polarization state of four photons. We characterize the quantum state fully by implementing experimental four-qubit quantum state tomography. Using this cluster state, we demonstrate the feasibility of one-way quantum computing through a universal set of one- and two-qubit operations. Finally, our implementation of Grover's search algorithm demonstrates that one-way quantum computation is ideally suited for such tasks.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to the full article PDF.

¥ 4,980

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Few-qubit cluster states and the quantum circuits they implement.
Figure 2: Density matrix of the four-qubit cluster state in the laboratory basis.
Figure 3: Output Bloch vectors from single qubit rotations using a three-qubit linear cluster |Φlin3〉.
Figure 4: The output density matrices from two different two-qubit computations.
Figure 5: Grover's algorithm in a cluster state quantum computer.
Figure 6: The experimental set-up to produce and measure cluster states.

Similar content being viewed by others

ArticleOpen access09 April 2021

References

  1. Deutsch, D. & Ekert, E. Quantum computation.Phys. World11, 47–52 (1998)

    Article CAS  Google Scholar 

  2. Braunstein, S. L. & Lo, H.-K. (eds) Experimental proposals for quantum computation.Fortschr. Phys.48 (special focus issue 9–11), 767–1138 (2000).

  3. Shor, P. W. inProc. 35th Annu. Symp. Foundations of Computer Science (ed. Goldwasser, S.) 124–134 (IEEE Computer Society Press, Los Alamitos, 1994)

    Book  Google Scholar 

  4. Grover, L. K. Quantum mechanics helps in search for a needle in a haystack.Phys. Rev. Lett.79, 325–328 (1997)

    Article ADS CAS  Google Scholar 

  5. Bennett, C. & DiVicenzo, D. Quantum information and computation.Nature404, 247–255 (2000)

    Article ADS CAS  Google Scholar 

  6. Ekert, A. & Josza, R. Quantum algorithms: entanglement enhanced information processing.Phil. Trans. R. Soc. Lond. A356, 1769–1782 (1998)

    Article ADS MathSciNet  Google Scholar 

  7. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations.Nature402, 390–393 (1999)

    Article ADS CAS  Google Scholar 

  8. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics.Nature409, 46–52 (2001)

    Article ADS CAS  Google Scholar 

  9. Linden, N. & Popescu, S. Good dynamics versus bad kinematics: Is entanglement needed for quantum computation?Phys. Rev. Lett.87, 047901 (2001)

    Article ADS CAS  Google Scholar 

  10. Josza, R. & Linden, N. On the role of the entanglement in quantum computational speed-up.Proc. R. Soc. Lond. A459, 2011–2032 (2003)

    Article ADS MathSciNet  Google Scholar 

  11. Nielsen, M. A. Quantum computation by measurement and quantum memory.Phys. Lett. A308, 96–100 (2003)

    Article ADS MathSciNet CAS  Google Scholar 

  12. Biham, E., Brassard, G., Kenigsberg, D. & Mor, T. Quantum computing without entanglement.Theor. Comput. Sci.320, 15–33 (2004)

    Article MathSciNet  Google Scholar 

  13. Briegel, H. J. & Raussendorf, R. Persistent entanglement in arrays of interacting particles.Phys. Rev. Lett.86, 910–913 (2001)

    Article ADS CAS  Google Scholar 

  14. Raussendorf, R. & Briegel, H. J. A one-way quantum computer.Phys. Rev. Lett.86, 5188–5191 (2001)

    Article ADS CAS  Google Scholar 

  15. Raussendorf, R. & Briegel, H. J. Computational model underlying the one-way quantum computer.Quant. Inform. Comput.2, 344–386 (2002)

    MathSciNet MATH  Google Scholar 

  16. Raussendorf, R., Brown, D. E. & Briegel, H. J. The one-way quantum computer—a non-network model of quantum computation.J. Mod. Opt.49, 1299–1306 (2002)

    Article ADS MathSciNet  Google Scholar 

  17. Raussendorf, R., Brown, D. E. & Briegel, H. J. Measurement-based quantum computation on cluster states.Phys. Rev. A68, 022312 (2003)

    Article ADS  Google Scholar 

  18. Nielsen, M. & Dawson, C. M. Fault-tolerant quantum computation with cluster states. Preprint athttp://arXiv.org/quant-ph/0405134 (2004).

  19. Mandel, O. et al. Controlled collisions for multiparticle entanglement of optically trapped ions.Nature425, 937–940 (2003)

    Article ADS CAS  Google Scholar 

  20. O'Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-not gate.Nature426, 264–267 (2003)

    Article ADS CAS  Google Scholar 

  21. Pittman, T. B., Fitch, M. J., Jacobs, B. C. & Franson, J. D. Experimental controlled-not logic gate of single photons in the coincidence basis.Phys. Rev. A.68, 032316 (2003)

    Article ADS  Google Scholar 

  22. Gasparoni, S., Pan, J.-W., Walther, P., Rudolph, T. & Zeilinger, A. Realization of a photonic controlled-NOT gate sufficient for quantum computation.Phys. Rev. Lett.92, 020504 (2004)

    Article  Google Scholar 

  23. Sanaka, K., Jennewein, T., Pan, J.-W., Resch, K. & Zeilinger, A. Experimental nonlinear sign-shift for linear optics quantum computation.Phys. Rev. Lett.92, 017902 (2004)

    Article ADS  Google Scholar 

  24. Nielsen, M. A. Optical quantum computation using cluster states.Phys. Rev. Lett.93, 040503 (2004)

    Article ADS  Google Scholar 

  25. Brown, D. E. & Rudolph, T. Efficient linear optical quantum computation. Preprint athttp://arXiv.org/quant-ph/0405157 (2004).

  26. Walther, P. et al. De Broglie wavelength of a non-local four-photon state.Nature429, 158–161 (2004)

    Article ADS CAS  Google Scholar 

  27. Hein, M., Eisert, J. & Briegel, H.-J. Multi-party entanglement in graph states.Phys. Rev. A69, 062311 (2004)

    Article ADS MathSciNet  Google Scholar 

  28. Roos, C. F. et al. Control and measurement of three-qubit entangled states.Science304, 1478–1480 (2004)

    Article ADS CAS  Google Scholar 

  29. Weinstein, Y. et al. Quantum process tomography of the quantum Fourier transform.J. Chem. Phys.121, 6117–6133 (2004)

    Article ADS CAS  Google Scholar 

  30. Hradil, Z. Quantum-state estimation.Phys. Rev. A55, R1561–R1564 (1997)

    Article ADS MathSciNet CAS  Google Scholar 

  31. Banaszek, K., Ariano, A., Paris, M. & Sacchi, M. Maximum-likelihood estimation of the density matrix.Phys. Rev. A61, 010304 (1999)

    Article  Google Scholar 

  32. James, D., Kwiat, P., Munro, W. & White, A. Measurement of qubits.Phys. Rev. A64, 052312 (2001)

    Article ADS  Google Scholar 

  33. Toth, G. & Guehne, O. Detecting genuine multipartite entanglement with two local measurements. Preprint athttp://arXiv.org/quant-ph/0405165 (2004).

  34. Dür, W. & Briegel, H.-J. Stability of macroscopic entanglement under decoherence.Phys. Rev. Lett.92, 180403 (2004)

    Article ADS  Google Scholar 

  35. Greenberger, D. M., Horne, M. A. & Zeilinger, A. inBell's Theorem, Quantum Theory and Concepts of the Universe (ed. Kafatos, M.) (Kluwer, Dordrecht, 1989)

    Google Scholar 

  36. Zeilinger, A., Horne, M. & Greenberger, D. inSqueezed States and Quantum Uncertainty (eds Han, D., Kim, Y. S. & Zachary, W. W.) (NASA Conference Publication 3135, NASA, College Park, 1992)

    MATH  Google Scholar 

  37. Dür, W., Vidal, G. & Cirac, J. I. Three qubits can be entangled in two inequivalent ways.Phys. Rev. A62, 62314–62325 (2000)

    Article ADS MathSciNet  Google Scholar 

  38. SenDe, A., Sen, U., Wiesniak, M., Kaszlikowski, D. & Zukowski, M. Multi-qubit W states lead to stronger nonclassicality than Greenberger-Horne-Zeilinger states.Phys. Rev. A68, 623306 (2003)

    Google Scholar 

  39. Horodecki, M., Horodecki, P. & Horodecki, R. Separability of mixed states: necessary and sufficient conditions.Phys. Lett. A223, 1–8 (1996)

    Article ADS MathSciNet CAS  Google Scholar 

  40. Peres, A. Separability criterion for density matrices.Phys. Rev. Lett.77, 1413–1415 (1996)

    Article ADS MathSciNet CAS  Google Scholar 

  41. Chuang, I. L. & Nielsen, M. A. Prescription for experimental determination of the dynamics of a quantum black box.J. Mod. Opt.44, 2455–2467 (1997)

    Article ADS  Google Scholar 

  42. Poyatos, J. F., Cirac, J. I. & Zoller, P. Complete characterization of a quantum process: the two-bit quantum gate.Phys. Rev. Lett.78, 390–393 (1997)

    Article ADS CAS  Google Scholar 

  43. Schumacher, B. Quantum coding.Phys. Rev. A51, 2738–2747 (1995)

    Article ADS MathSciNet CAS  Google Scholar 

  44. Coffman, V., Kundu, J. & Wootters, W. K. Distributed entanglement.Phys. Rev. A61, 052306 (2000)

    Article ADS  Google Scholar 

  45. Horodecki, R., Horodecki, P. & Horodecki, M. Violating Bell inequality by mixed spin-1/2 states: necessary and sufficient condition.Phys. Lett. A200, 340–344 (1995)

    Article ADS MathSciNet CAS  Google Scholar 

  46. Ahn, J., Weinacht, T. C. & Bucksbaum, P. H. Information storage and retrieval through quantum phase.Science287, 463–465 (2000)

    Article ADS CAS  Google Scholar 

  47. Bhattacharya, N., van Linden van den Heuvell, H. B. & Spreeuw, R. J. C. Implementation of quantum search algorithm using classical Fourier optics.Phys. Rev. Lett.88, 137901 (2002)

    Article ADS CAS  Google Scholar 

  48. Chuang, I. L., Gershenfeld, N. & Kubinec, M. Experimental implementation of a fast quantum searching.Phys. Rev. Lett.80, 3408–3411 (1997)

    Article ADS  Google Scholar 

  49. Jones, J. A., Mosca, M. & Hansen, R. H. Implementation of a quantum search algorithm on a quantum computer.Nature393, 344–346 (1998)

    Article ADS  Google Scholar 

  50. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs.Phys. Rev. Lett.75, 4337–4342 (1995)

    Article ADS CAS  Google Scholar 

Download references

Acknowledgements

We thank H. J. Briegel, D. Browne and M. Zukowski for theoretical discussions, and C. Först for assistance with graphics. This work was supported by the Austrian Science Foundation (FWF), NSERC, the European Commission under project RAMBOQ, and by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

  1. Institute of Experimental Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria

    P. Walther, K. J. Resch, E. Schenck, V. Vedral, M. Aspelmeyer & A. Zeilinger

  2. QOLS, Blackett Laboratory, Imperial College London, SW7 2BW, London, UK

    T. Rudolph

  3. Department of Physics, Ludwig Maximilians University, D-80799, Munich, Germany

    H. Weinfurter

  4. Max Planck Institute for Quantum Optics, D-85741, Garching, Germany

    H. Weinfurter

  5. The Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, 1090, Vienna, Austria

    V. Vedral

  6. The School of Physics and Astronomy, University of Leeds, LS2 9JT, Leeds, UK

    V. Vedral

  7. IQOQI, Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090, Vienna, Austria

    A. Zeilinger

  8. Ecole normale supérieure, 45, rue d'Ulm, 75005, Paris, France

    E. Schenck

Authors
  1. P. Walther
  2. K. J. Resch
  3. T. Rudolph
  4. E. Schenck
  5. H. Weinfurter
  6. V. Vedral
  7. M. Aspelmeyer
  8. A. Zeilinger

Corresponding authors

Correspondence toP. Walther orA. Zeilinger.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Tables 1-2

The state fidelities of the output qubits from one-qubit and two-qubit quantum computations. (DOC 189 kb)

Rights and permissions

About this article

Cite this article

Walther, P., Resch, K., Rudolph, T.et al. Experimental one-way quantum computing.Nature434, 169–176 (2005). https://doi.org/10.1038/nature03347

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Editorial Summary

One way to quantum computing

A new approach to quantum computing was launched by Robert Raussendorf and Hans Briegel in 2001. Until then most experiments had involved a sequence of interactions between single particles (qubits) in a sequential network of quantum logic gates. Raussendorf and Briegel envisaged computing based on a particular class of entangled states, the cluster states. In this method, a quantum computer is initialized in a cluster state, then computation proceeds by single-particle measurements on individual qubits in the cluster. The measurements imprint a quantum logic circuit on the state, which destroys its entanglement and makes the process irreversible. Hence the name ‘one-way quantum computing’ for the system. Waltheret al. now report a significant experimental advance: the first realizations of cluster states and cluster state quantum computation. The cluster is created in the polarization state of four photons and computing proceeds via a set of one- and two-qubit operations.

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp