Movatterモバイル変換


[0]ホーム

URL:


Search icon

    Vitamin D Deficiency and Dependency

    (Rickets; Osteomalacia)

    ByLarry E. Johnson, MD, PhD,University of Arkansas for Medical Sciences
    Reviewed ByGlenn D. Braunstein, MD,Cedars-Sinai Medical Center
    Reviewed/Revised Aug 2024 |Modified Apr 2025
    v885167
    View Patient Education

    Inadequate exposure to sunlight predisposes tovitamin D deficiency. Deficiency impairs bone mineralization, causing rickets in children and osteomalacia in adults and possibly contributing to osteoporosis. Diagnosis involves measurement of serum 25(OH)D (D2 + D3). Treatment usually consists of oralvitamin D; calcium and phosphate are supplemented as needed. Prevention is often possible. Rarely, hereditary disorders cause impaired metabolism ofdeficiency. Deficiency impairs bone mineralization, causing rickets in children and osteomalacia in adults and possibly contributing to osteoporosis. Diagnosis involves measurement of serum 25(OH)D (D2 + D3). Treatment usually consists of oral vitamin D; calcium and phosphate are supplemented as needed. Prevention is often possible. Rarely, hereditary disorders cause impaired metabolism ofvitamin D (dependency).

    Vitamin D deficiency is common worldwide. It is a common cause of rickets and osteomalacia, but these disorders may also result from other conditions, such aschronic kidney disease, various renal tubular disorders, familialhypophosphatemic (vitamin D–resistant) rickets, chronicmetabolic acidosis,hyperparathyroidism,hypoparathyroidism, inadequate dietary calcium, and disorders or medications that impair the mineralization of bone matrix.

    Vitamin D deficiency causeshypocalcemia, which stimulates production ofparathyroid hormone (PTH), causing hyperparathyroidism. Hyperparathyroidism increases absorption, bone mobilization, and renal conservation of calcium but increases excretion of phosphate. As a result, the serum level of calcium may be normal, but because ofhypophosphatemia, bone mineralization is impaired.

    Physiology ofVitamin D Deficiency and Dependency

    Vitamin D has 2 main forms:

    • D2 (ergocalciferol)

    • D3 (cholecalciferol): The naturally occurring form and the form used for low-dose supplementation

    Vitamin D3 is synthesized in skin by exposure to direct sunlight (ultraviolet B radiation) and obtained in the diet chiefly in fish liver oils and salt water fish (see tableSources, Functions, and Effects of Vitamins). In some countries, milk and other foods are fortified withvitamin D. Human breast milk is low in). In some countries, milk and other foods are fortified with vitamin D. Human breast milk is low invitamin D, containing an average of only 10% of the amount in fortified cow’s milk.

    Vitamin D levels may decrease with age because skin synthesis declines. Sunscreen use and dark skin pigmentation also reduce skin synthesis ofvitamin D.

    Vitamin D is a prohormone with several active metabolites that act as hormones. It is metabolized by the liver to 25(OH)D (calcifediol, calcidiol, 25-hydroxycholecalciferol, or 25-hydroxyvitamin D), which is then converted by the kidneys to 1,25-dihydroxyvitamin D (1,25-dihydroxycholecalciferol,calcitriol, or activevitamin D hormone). 25(OH)D, the major circulating form, has some metabolic activity, but 1,25-dihydroxyvitamin D is the most metabolically active. The conversion to 1,25-dihydroxyvitamin D is regulated by its own concentration,parathyroid hormone (PTH), and serum concentrations of calcium and phosphate.

    Vitamin D affects many organ systems (see tableActions ofVitamin D and Its MetabolitesActions of Vitamin D and Its Metabolites), but mainly it increases calcium and phosphate absorption from the intestine and promotes normal bone formation and mineralization.

    Vitamin D and related analogs may be used to treatpsoriasis,hypoparathyroidism, andrenal osteodystrophy. Its usefulness in reducing all-cause mortality or in preventing leukemia and breast, prostate, colon, or other cancers has not been proved nor has its efficacy in treating various other nonskeletal disorders in adults (1–3).Vitamin D supplementation does not effectively treat or prevent depression or cardiovascular disease (4, 5) and has minimal effects on preventing acute respiratory infections (6). Taking the combined recommended dietary allowance of bothvitamin D and calcium may slightly reduce the risk of falls (). Taking the combined recommended dietary allowance of both vitamin D and calcium may slightly reduce the risk of falls (7) in patients who arevitamin D deficient, especially those who are institutionalized; however, large doses ofvitamin D may increase fracture risk (8, 9). Because the causes of falls are multifactorial, other studies have not found thatvitamin D supplements alone reduce falls and fractures in older adults (10, 11).

    (See alsoOverview of Vitamins.)

    Table
    Table

    Actions of Vitamin D and Its Metabolites

    Actions of Vitamin D and Its Metabolites

    Organ

    Actions

    Bone

    Promotes bone formation by maintaining appropriate calcium and phosphate concentrations

    Immune system

    Stimulates immunogenic and antitumor activity

    Decreases risk of autoimmune disorders

    Intestine

    Enhances calcium and phosphate transport (absorption)

    Kidneys

    Enhances calcium reabsorption by the tubules

    Parathyroid glands

    Inhibitsparathyroid hormone secretion

    Pancreas

    Stimulatesinsulin production

    Physiology references

    1. 1.Autier P, Mullie P, Macacu A, et al: Effect ofvitamin D supplementation on non-skeletal disorders: A systematic review of meta-analyses and randomised trials.Lancet Diabetes Endocrinol 5 (12):986–1004, 2017. doi: 10.1016/S2213-8587(17)30357-1

    2. 2.Manson JE, Cook NR, Lee IM, et al:Vitamin D supplements and prevention of cancer and cardiovascular disease.N Engl J Med 380(1):33-44, 2019. doi: 10.1056/NEJMoa1809944

    3. 3.Neale RE, Baxter C, Romero BD, et al. The D-Health Trial: a randomised controlled trial of the effect ofvitamin D on mortality [published correction appears inLancet Diabetes Endocrinol. 2022 Apr;10(4):e7. doi: 10.1016/S2213-8587(22)00083-3]. Lancet Diabetes Endocrinol. 2022;10(2):120-128. doi:10.1016/S2213-8587(21)00345-4

    4. 4.Okereke OI, Reynolds CF 3rd, Mischoulon D, et al: Effect of long-term vitamin D3 supplementation vs placebo on risk of depression or clinically relevant depressive symptoms and on change in mood scores: A randomized clinical trial. JAMA 324(5):471-480, 2020. doi: 10.1001/jama.2020.10224

    5. 5.Barbarawi M, Kheiri B, Zayed Y, et al:Vitamin D supplementation and cardiovascular disease risks in more than 83,000 individuals in 21 randomized clinical trials: A meta-analysis [published correction appears inJAMA Cardiol 2019 Nov 6]. JAMA Cardiol 4(8):765-776, 2019. doi: 10.1001/jamacardio.2019.1870

    6. 6.Jolliffe DA, Camargo CA Jr, Sluyter JD, et al.Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021;9(5):276-292. doi:10.1016/S2213-8587(21)00051-6

    7. 7.Ling Y, Xu F, Xia X, et al:Vitamin D supplementation reduces the risk of fall in thevitamin D deficient elderly: an updated meta-analysis.Clin Nutr 40:5531-5537, 2021. doi:10.1016/j.clnu.2021.09.031

    8. 8.Yao P, Bennett D, Mafham M, et al.Vitamin D and Calcium for the Prevention of Fracture: A Systematic Review and Meta-analysis. JAMA Netw Open. 2019;2(12):e1917789. Published 2019 Dec 2. doi:10.1001/jamanetworkopen.2019.17789

    9. 9.Zhao JG, Zeng XT, Wang J, Liu L. Association Between Calcium orVitamin D Supplementation and Fracture Incidence in Community-Dwelling Older Adults: A Systematic Review and Meta-analysis. JAMA. 2017;318(24):2466-2482. doi:10.1001/jama.2017.19344

    10. 10.Appel LJ, Michos ED, Mitchell CM, et al: The effects of four doses ofvitamin D supplements on falls in older adults: a response-adaptive, randomized clinical trial.Ann Intern Med 174:145-156, 2021. doi:10.7326/M20-3812

    11. 11.LeBoff MS, Chou SH, Ratliff KA, et al. SupplementalVitamin D and Incident Fractures in Midlife and Older Adults. N Engl J Med. 2022;387(4):299-309. doi:10.1056/NEJMoa2202106

    Etiology ofVitamin D Deficiency and Dependency

    Vitamin D deficiency may result from the following:

    • Inadequate exposure to sunlight

    • Inadequate intake ofvitamin D

    • Reduced absorption ofvitamin D

    • Abnormal metabolism ofvitamin D

    • Resistance to the effects ofvitamin D

    Inadequate exposure or intake

    Inadequate direct sunlight exposure or sunscreen use and inadequate intake usually occur simultaneously to result in clinical deficiency. Susceptible people include

    • Older adults (who are often undernourished and are not exposed to enough sunlight)

    • Certain communities (eg, women and children who are confined to the home or who wear clothing that covers the entire body and face)

    Inadequatevitamin D stores are common among older adults, particularly those who are housebound, institutionalized, or hospitalized or who have had a hip fracture.

    Recommended direct sunlight exposure is 5 to 15 minutes (suberythemal dose) to the arms and legs or to the face, arms, and hands, at least 3 times a week. However, many dermatologists do not recommend increased sunlight exposure because risk of skin cancer is increased.

    Reduced absorption

    Malabsorption can deprive the body of dietaryvitamin D; only a small amount of 25(OH)D is recirculated enterohepatically.

    Abnormal metabolism

    Vitamin D deficiency may result from defects in the production of 25(OH)D or 1,25-dihydroxyvitamin D. People withchronic kidney disease may develop rickets or osteomalacia because renal production of 1,25-dihydroxyvitamin D is decreased and phosphate levels are elevated. Hepatic dysfunction can also interfere with production of activevitamin D metabolites.

    Type I hereditaryvitamin D–dependent rickets is an autosomal recessive disorder characterized by absent or defective conversion of 25(OH)D to 1,25-dihydroxyvitamin D in the kidneys. In X-linked familial hypophosphatemia, decreased reabsorption of phosphate from the glomerular filtrate in the kidney with low or inappropriately normal levels of 1,25-dihydroxyvitamin D leads to bone deformities.

    Many antiseizure medications and glucocorticoids increase the need forvitamin D supplementation because they interfere withMany antiseizure medications and glucocorticoids increase the need for vitamin D supplementation because they interfere withvitamin D metabolism.

    Resistance to effects of vitamin D

    Type II hereditaryvitamin D–dependent rickets has several forms and is due to mutations in the 1,25-dihydroxyvitamin D receptor. This receptor affects the metabolism of 1,25-dihydroxyvitamin D in the gut, kidney, bone, and other cells. In this disorder, 1,25-dihydroxyvitamin D is abundant but ineffective because the receptor is not functional.

    Symptoms and Signs ofVitamin D Deficiency and Dependency

    Vitamin D deficiency can cause muscle aches, muscle weakness, and bone pain at any age.

    Vitamin D deficiency in a pregnant woman causes deficiency in the fetus. Occasionally, deficiency severe enough to cause maternal osteomalacia results in rickets with metaphyseal lesions in neonates.

    In young infants, rickets causes softening of the entire skull (craniotabes). When palpated, the occiput and posterior parietal bones may indent easily.

    In older infants with rickets, sitting and crawling are delayed, as is fontanelle closure; there is bossing of the skull and costochondral thickening. Costochondral thickening can look like beadlike prominences along the lateral chest wall (rachitic rosary).

    In children 1 to 4 years, epiphyseal cartilage at the lower ends of the radius, ulna, tibia, and fibula enlarge; kyphoscoliosis develops, and walking is delayed.

    In older children and adolescents, walking is painful; in extreme cases, deformities such asbowlegs andknock-knees develop. The pelvic bones may flatten, narrowing the birth canal in adolescent girls.

    Tetany is caused byhypocalcemia and may accompany infantile or adultvitamin D deficiency. Tetany may cause paresthesias of the lips, tongue, and fingers; carpopedal and facial spasm; and, if very severe, seizures. Maternal deficiency can cause tetany in neonates.

    Osteomalacia predisposes to fractures. In older adults, hip fractures may result from only minimal trauma.

    Diagnosis ofVitamin D Deficiency and Dependency

    • Levels of 25(OH)D (D2 + D3)

    Vitamin D deficiency may be suspected based on any of the following:

    • A history of inadequate sunlight exposure or dietary intake

    • Symptoms and signs of rickets, osteomalacia, or neonatal tetany

    • Characteristic bone changes seen on radiographs

    Radiographs of the radius and ulna plus serum levels of calcium, phosphate, alkaline phosphatase,parathyroid hormone (PTH), and 25(OH)D are needed to differentiatevitamin D deficiency from other causes of bone demineralization.

    Assessment ofvitamin D status and serologic tests for syphilis can be considered for infants with craniotabes based on the history and physical examination, but most cases of craniotabes resolve spontaneously. Rickets can be distinguished from chondrodystrophy because the latter is characterized by a large head, short extremities, thick bones, and normal serum calcium, phosphate, and alkaline phosphatase levels.

    Tetany due to infantile rickets may be clinically indistinguishable from seizures due to other causes. Blood tests and clinical history may help distinguish them.

    Radiographs

    Bone changes, seen on radiographs, precede clinical signs. In rickets, changes are most evident at the lower ends of the radius and ulna. The diaphyseal ends lose their sharp, clear outline; they are cup-shaped and show a spotty or fringy rarefaction. Later, because the ends of the radius and ulna have become noncalcified and radiolucent, the distance between them and the metacarpal bones appears increased. The bone matrix elsewhere also becomes more radiolucent. Characteristic deformities result from the bones bending at the cartilage-shaft junction because the shaft is weak. As healing begins, a thin white line of calcification appears at the epiphysis, becoming denser and thicker as calcification proceeds. Later, the bone matrix becomes calcified and opacified at the subperiosteal level.

    In adults, bone demineralization, particularly in the spine, pelvis, and lower extremities, can be seen on radiographs; the fibrous lamellae can also be seen, and incomplete ribbonlike areas of demineralization (pseudofractures, Looser lines, Milkman syndrome) appear in the cortex.

    Laboratory tests

    Because levels of serum 25(OH)D reflect body stores ofvitamin D and correlate with symptoms and signs ofvitamin D deficiency better than levels of othervitamin D metabolites, the best way to diagnosevitamin D deficiency is generally by measuring

    • 25(OH)D (D2 + D3) levels

    Target 25(OH)D levels are > 20 to 24 ng/mL (about 50 to 60 nmol/L) for maximal bone health; whether higher levels have other benefits remains uncertain, and higher absorption of calcium may increase risk of coronary artery disease.

    If the diagnosis is unclear, serum levels of 1,25-dihydroxyvitamin D and urinary calcium concentration can be measured. In severe deficiency, serum 1,25-dihydroxyvitamin D is abnormally low, usually undetectable. Urinary calcium is low in all forms of the deficiency except those associated with acidosis.

    Invitamin D deficiency, serum calcium may be low or, because of secondary hyperparathyroidism, may be normal. Serum phosphate usually decreases, and serum alkaline phosphatase usually increases. Serum PTH may be normal or elevated.

    Type I hereditaryvitamin D–dependent rickets results in normal serum 25(OH)D, low serum 1,25-dihydroxyvitamin D and calcium, and normal or low serum phosphate.

    Treatment ofVitamin D Deficiency and Dependency

    • Correction of calcium and phosphate deficiencies

    • Supplementalvitamin DSupplemental vitamin D

    Calcium deficiency (which is common) and phosphate deficiency should be corrected.

    As long as calcium and phosphate intake is adequate, adults with osteomalacia and children with uncomplicated rickets can be cured by giving vitamin D3 40 mcg (1600 international units [IU]) orally once a day. Serum 25(OH)D and 1,25-dihydroxyvitamin D begin to increase within 1 or 2 days. Serum calcium and phosphate increase and serum alkaline phosphatase decreases within about 10 days. During the third week, enough calcium and phosphate are deposited in bones to be visible on radiographs. After about 1 month, the dose can usually be reduced gradually to the usual maintenance level of 15 mcg (600 IU) once/day.

    If tetany is present,vitamin D should be supplemented with IV calcium salts for up to 1 week (seeHypocalcemia).

    Some older adult patients need vitamin D3 25 to> 50 mcg (1000 to 2000 IU) daily to maintain a 25(OH)D level> 20 ng/mL (> 50 nmol/L); this dose is higher than the recommended dietary allowance for people< 70 years (600 IU) or > 70 years (800 IU). The current upper limit forvitamin D is 4000 IU/day. Higher doses of vitamin D2 (eg, 25,000 to 50,000 IU every week or every month) are sometimes prescribed; however, because vitamin D3 is more potent than vitamin D2, it is now preferred.

    Because rickets and osteomalacia due to defective production ofvitamin D metabolites arevitamin D–resistant, they do not respond to the doses usually effective for rickets due to inadequate intake. Endocrinologic evaluation is required because treatment depends on the specific defect. When 25(OH)D production is defective, vitamin D3 50 mcg (2000 IU) once a day increases serum levels and results in clinical improvement. Patients with kidney disorders often need 1,25-dihydroxyvitamin D (calcitriol) supplementation.–resistant, they do not respond to the doses usually effective for rickets due to inadequate intake. Endocrinologic evaluation is required because treatment depends on the specific defect. When 25(OH)D production is defective, vitamin D3 50 mcg (2000 IU) once a day increases serum levels and results in clinical improvement. Patients with kidney disorders often need 1,25-dihydroxyvitamin D (calcitriol) supplementation.

    Type I hereditaryvitamin D–dependent rickets responds to 1,25-dihydroxyvitamin D 1 to 2 mcg orally once a day. Some patients with type II hereditaryvitamin D–dependent rickets respond to very high doses (eg, 10 to 24 mcg/day) of 1,25-dihydroxyvitamin D; others require long-term infusions of calcium.

    Prevention ofVitamin D Deficiency and Dependency

    Dietary counseling is particularly important for people in communities who are at risk ofvitamin D deficiency.

    Fortifying unleavened chapati flour withvitamin D (125 mcg/kg) has been effective among Indian immigrants in Britain.Fortifying unleavened chapati flour with vitamin D (125 mcg/kg) has been effective among Indian immigrants in Britain.

    The benefits of sunlight exposure forvitamin D status must be weighed against the increased skin damage and skin cancer risks.

    All breastfed infants should be given supplementalvitamin D 10 mcg (400 IU) once a day from birth to 6 months; at 6 months, a more diversified diet is available. Any benefit of doses higher than the recommended dietary allowance is unproved.All breastfed infants should be given supplemental vitamin D 10 mcg (400 IU) once a day from birth to 6 months; at 6 months, a more diversified diet is available. Any benefit of doses higher than the recommended dietary allowance is unproved.

    Screening

    The US Preventive Services Task force has concluded that there is insufficient evidence to assess the benefits and harms of screening forvitamin D deficiency in asymptomatic adults (1). Endocrine societies in the United States, Europe, and other countries have published a clinical practice guideline for people without other indications forvitamin D supplementation or testing. This guideline recommends against empiricvitamin D supplementation or 25(OH)D screening in peoples between 18 and 74 years of age, including adults with obesity or with dark skin pigmentation. The recommended dietary allowance of vitamin D3 supplements may benefit people over age 75, people who are at high risk of prediabetes, and pregnant women, but routine 25(OH)D testing is not needed (2).

    Screening references

    1. 1.US Preventive Services Task Force, Krist AH, Davidson KW, et al. Screening forVitamin D Deficiency in Adults: US Preventive Services Task Force Recommendation Statement. JAMA. 2021;325(14):1436-1442. doi:10.1001/jama.2021.3069

    2. 2.Demay MB, Pittas AG, Bikle DD, et al.Vitamin D for the Prevention of Disease: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. Published online June 3, 2024. doi:10.1210/clinem/dgae290

    Key Points

    • Vitamin D deficiency is common and results from inadequate exposure to sunlight and inadequate dietary intake (usually occurring together) and/or from chronic kidney disease.

    • The deficiency can cause muscle aches and weakness, bone pain, and osteomalacia.

    • Suspectvitamin D deficiency in patients who have little exposure to sunlight and a low dietary intake, typical symptoms and signs (eg, rickets, muscle aches, bone pain), or bone demineralization seen on radiographs.

    • To confirm the diagnosis, measure the level of 25(OH)D (D2 + D3).

    • To treatvitamin D deficiency, correct deficiencies of calcium and phosphate and give supplementalvitamin D.deficiency, correct deficiencies of calcium and phosphate and give supplemental vitamin D.

    Drugs Mentioned In This Article

    quizzes_lightbulb_red
    Test your KnowledgeTake a Quiz!

    Copyright© 2025Merck & Co., Inc., Rahway, NJ, USA and its affiliates. All rights reserved.


    [8]ページ先頭

    ©2009-2025 Movatter.jp