Movatterモバイル変換


[0]ホーム

URL:


Computer Science

Computer Science ››2018,Vol. 45 ››Issue (3): 67-68.doi:10.11896/j.issn.1002-137X.2018.03.011

Previous Articles    Next Articles

Birational Trilinear Mapping on Convex Hexahedrons

YE Jin-yun, WANG Xu-hui and QIAN Yi-jia  

    • Online:2018-03-15Published:2018-11-13

    Abstract:Based on the knowledge of three dimensional generalized barycentric coordinates,the results of birational trilinear mapping on planar quadrilateral were generalized to three dimensional convex hexahedron,namely,by assigning a suitable weight to every vertex of convex hexahedron,a three dimensional birational mapping was achieved.In addition,an example was given to illustrate the correctness of this method.

    Key words:Barycentric coordinates,Birational mapping,Convex hexahedron,Weight

    Cite this article

    YE Jin-yun, WANG Xu-hui and QIAN Yi-jia. Birational Trilinear Mapping on Convex Hexahedrons[J].Computer Science, 2018, 45(3): 67-68.

    [1] SEDERBERG T W,GOLDMAN R N.Birational 2D Free-Form Deformation of degree 1×n[J].Computer Aided Geometric Design,2016,44:1-9.
    [2] HUDSON H P.Cremona Transformations in Plane and Space[M].Cambridge:Cambridge University Press,1927.
    [3] SEDERBERG T W,ZHENG J.Birational quadrilateral maps[J].Computer Aided Geometric Design,2015,32:1-4.
    [4] FLOATER M S.The inverse of a rational bilinear mapping[J].Computer Aided Geometric Design,2015,33:46-50.
    [5] LEE S Y,CHWA K Y.SHIN S Y.Image metamorphosis using snakes and free-form deformations[C]∥Proceeding of the 22nd Annual Conference on Computer Graphics and Interactive Techniques.1995:59-69.
    [6] MANZONI A,QUARTERONI A,ROZZA G.Shape optimization for viscous flows by reduced basis methods and free-form deformations[J].International Journal for Numerical Methods in Fluids,2012,70(5):646-670.
    [7] FRANGI A F,NIESSEN W J,VIERGEVER M A.Three-dimensional modeling for functional analysis of cardiac images,a review[J].IEEE Transactions on Medical Imaging,2001,20(1):2-5.
    [8] HUANG X,PARAGIOS N,METAXAS D N.Shape registration in implicit spaces using information theory and free form deformations[J].IEEE Transactions on Medical Imaging,2006,28(8):1303-1318.
    [9] WARREN J,SCHAEFER S,et al.Barycentric coordinates for convex sets[J].Advances in Computatioanl Mathematics,2007,27(3):319-338.
    [10] WARREN J.Barycentric coordinates for convex polytopes[J].Advances in Computational Mathematics,1996,6(1):97-108.

    No related articles found!
    Viewed
    Full text


    Abstract

    Cited

     Shared  
     Discussed  
    No Suggested Reading articles found!
    TOP
    渝ICP备16013121号-4
    Add:18# Honghu West Rd., Yubei ,Chongqing,China    Post Code: 401121
    Tel: 023-63500828/023-67039612/023-67039623
    E-mail: jsjkx12@163.com
    Powered byBeijing Magtech Co., Ltd.

    [8]ページ先頭

    ©2009-2025 Movatter.jp