module Data.Array (
module Data.Ix, Array, array, listArray, accumArray, (!), bounds,
indices, elems, assocs, (//), accum, ixmap
) where
:: | Ix i |
=> | (i, i) | a pair ofbounds, each of the index type of the array. These bounds are the lowest and highest indices in the array, in that order. For example, a one-origin vector of length ’10’ has bounds ’(1,10)’, and a one-origin ’10’ by ’10’ matrix has bounds ’((1,1),(10,10))’. |
-> | [(i, e)] | a list ofassociationsof the form (index,value). Typically, this list will be expressed as a comprehension. An association ’(i, x)’ defines the value of the array at indexito bex. |
-> | Array i e | |
|
Construct an array with the specified bounds and containing values for given indices within these bounds.
The array is undefined (i.e. bottom) if any index in the list is out of bounds. If any two associations in the list have the same index, the value at that index is undefined (i.e. bottom).
Because the indices must be checked for these errors,array is strict in the bounds argument and in the indices of the association list, but non-strict in the values. Thus, recurrences such as the following are possible:
a = array (1,100) ((1,1) : [(i, i ⋆ a!(i-1)) | i <- [2..100]])
Not every index within the bounds of the array need appear in the association list, but the values associated with indices that do not appear will be undefined (i.e. bottom).
If, in any dimension, the lower bound is greater than the upper bound, then the array is legal, but empty. Indexing an empty array always gives an array-bounds error, butbounds still yields the bounds with which the array was constructed.
module Array (
module Data.Ix, -- export all of Data.Ix
Array, array, listArray, (!), bounds, indices, elems, assocs,
accumArray, (//), accum, ixmap ) where
import Data.Ix
import Data.List( (\\) )
infixl 9 !, //
data (Ix a) => Array a b = MkArray (a,a) (a -> b) deriving ()
array :: (Ix a) => (a,a) -> [(a,b)] -> Array a b
array b ivs
| any (not . inRange b. fst) ivs
= error "Data.Array.array: out-of-range array association"
| otherwise
= MkArray b arr
where
arr j = case [ v | (i,v) <- ivs, i == j ] of
[v] -> v
[] -> error "Data.Array.!: undefined array element"
_ -> error "Data.Array.!: multiply defined array element"
listArray :: (Ix a) => (a,a) -> [b] -> Array a b
listArray b vs = array b (zipWith (\ a b -> (a,b)) (range b) vs)
(!) :: (Ix a) => Array a b -> a -> b
(!) (MkArray _ f) = f
bounds :: (Ix a) => Array a b -> (a,a)
bounds (MkArray b _) = b
indices :: (Ix a) => Array a b -> [a]
indices = range . bounds
elems :: (Ix a) => Array a b -> [b]
elems a = [a!i | i <- indices a]
assocs :: (Ix a) => Array a b -> [(a,b)]
assocs a = [(i, a!i) | i <- indices a]
(//) :: (Ix a) => Array a b -> [(a,b)] -> Array a b
a // new_ivs = array (bounds a) (old_ivs ++ new_ivs)
where
old_ivs = [(i,a!i) | i <- indices a,
i ‘notElem‘ new_is]
new_is = [i | (i,_) <- new_ivs]
accum :: (Ix a) => (b -> c -> b) -> Array a b -> [(a,c)]
-> Array a b
accum f = foldl (\a (i,v) -> a // [(i,f (a!i) v)])
accumArray :: (Ix a) => (b -> c -> b) -> b -> (a,a) -> [(a,c)]
-> Array a b
accumArray f z b = accum f (array b [(i,z) | i <- range b])
ixmap :: (Ix a, Ix b) => (a,a) -> (a -> b) -> Array b c
-> Array a c
ixmap b f a = array b [(i, a ! f i) | i <- range b]
instance (Ix a) => Functor (Array a) where
fmap fn (MkArray b f) = MkArray b (fn . f)
instance (Ix a, Eq b) => Eq (Array a b) where
a == a' = assocs a == assocs a'
instance (Ix a, Ord b) => Ord (Array a b) where
a <= a' = assocs a <= assocs a'
instance (Ix a, Show a, Show b) => Show (Array a b) where
showsPrec p a = showParen (p > arrPrec) (
showString "array " .
showsPrec (arrPrec+1) (bounds a) . showChar ' ' .
showsPrec (arrPrec+1) (assocs a) )
instance (Ix a, Read a, Read b) => Read (Array a b) where
readsPrec p = readParen (p > arrPrec)
(\r -> [ (array b as, u)
| ("array",s) <- lex r,
(b,t) <- readsPrec (arrPrec+1) s,
(as,u) <- readsPrec (arrPrec+1) t ])
-- Precedence of the 'array' function is that of application itself
arrPrec = 10