Movatterモバイル変換


[0]ホーム

URL:


Eurekaselect logo
Bentham Newsletternewsletter banner
Login
Login

Forgot Your Password? New around here? Sign up
Register Cart 0
Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

D-Amino Acids in Peptides from Animals, Including Human: Occurrence, Structure, Bioactivity and Pharmacology

Author(s):Elsie C. Jimenez*

Volume 21, Issue 6, 2020

Page: [622 - 637]Pages: 16

DOI:10.2174/1389203721666200426233758

Price: $65

TIMBC 2025
Abstract

All life forms typically possess homochirality, with rare exceptions. In the case of peptidesand proteins, only L-amino acids are known to be encoded by genes. Nevertheless, D-amino acids havebeen identified in a variety of peptides, synthesized by animal cells. They include neuroexcitatory andneuroprotective peptides, cardioexcitatory peptides, hyperglycemic hormones, opioid peptides, antimicrobialpeptides, natriuretic and defensin-like peptides, and fibrinopeptides. This article is a review oftheir occurrence, structure and bioactivity. It further explores the pharmacology and potential medicalapplications of some of the peptides.

Keywords:D-amino acid, achatin, conotoxin, agatoxin, crustacean hyperglycemic hormone, dermorphin and deltorphin, natriureticand defensin-like peptides, fibrinopeptide.

Graphical Abstract

[1]
Kleinkauf, H.; von Döhren, H. Nonribosomal biosynthesis of peptide antibiotics.Eur. J. Biochem.,1990,192(1), 1-15.
[http://dx.doi.org/10.1111/j.1432-1033.1990.tb19188.x] [PMID: 2205497]
[2]
Richter, K.; Egger, R.; Kreil, G. D-alanine in the frog skin peptide dermorphin is derived from L-alanine in the precursor.Science,1987,238(4824), 200-202.
[http://dx.doi.org/10.1126/science.3659910] [PMID: 3659910]
[3]
Yasuda-Kamatani, Y.; Nakamura, M.; Minakata, H.; Nomoto, K.; Sakiyama, F. A novel cDNA sequence encoding the precursor of the D-amino acid-containing neuropeptide fulicin and multiple α-amidated neuropeptides from Achatina fulica.J. Neurochem.,1995,64(5), 2248-2255.
[http://dx.doi.org/10.1046/j.1471-4159.1995.64052248.x] [PMID: 7722509]
[4]
Matsuo, R.; Kobayashi, S.; Morishita, F.; Ito, E. Expression of Asn-d-Trp-Phe-NH2 in the brain of the terrestrial slug Limax valentianus.Comp. Biochem. Physiol. B Biochem. Mol. Biol.,2011,160(2-3), 89-93.
[http://dx.doi.org/10.1016/j.cbpb.2011.06.007] [PMID: 21749929]
[5]
Heck, S.D.; Siok, C.J.; Krapcho, K.J.; Kelbaugh, P.R.; Thadeio, P.F.; Welch, M.J.; Williams, R.D.; Ganong, A.H.; Kelly, M.E.; Lanzetti, A.J.; Gray, W.R.; Phillips, D.; Parks, T.N.; Jackson, H.; Ahlijanian, M.K.; Saccomano, N.A.; Volkmann, R.A. Functional consequences of posttranslational isomerization of Ser46 in a calcium channel toxin.Science,1994,266(5187), 1065-1068.
[http://dx.doi.org/10.1126/science.7973665] [PMID: 7973665s]
[6]
Heck, S.D.; Faraci, W.S.; Kelbaugh, P.R.; Saccomano, N.A.; Thadeio, P.F.; Volkmann, R.A. Posttranslational amino acid epimerization: enzyme-catalyzed isomerization of amino acid residues in peptide chains.Proc. Natl. Acad. Sci. USA,1996,93(9), 4036-4039.
[http://dx.doi.org/10.1073/pnas.93.9.4036] [PMID: 8633012]
[7]
Bansal, P.S.; Torres, A.M.; Crossett, B.; Wong, K.K.; Koh, J.M.; Geraghty, D.P.; Vandenberg, J.I.; Kuchel, P.W. Substrate specificity of platypus venom L-to-D-peptide isomerase.J. Biol. Chem.,2008,283(14), 8969-8975.
[http://dx.doi.org/10.1074/jbc.M709762200] [PMID: 18158286]
[8]
Jilek, A.; Mollay, C.; Lohner, K.; Kreil, G. Substrate specificity of a peptidyl-aminoacyl-L/D-isomerase from frog skin.Amino Acids,2012,42(5), 1757-1764.
[http://dx.doi.org/10.1007/s00726-011-0890-6] [PMID: 21424715]
[9]
Soyez, D.; Toullec, J.Y.; Ollivaux, C.; Géraud, G. L to D amino acid isomerization in a peptide hormone is a late post-translational event occurring in specialized neurosecretory cells.J. Biol. Chem.,2000,275(48), 37870-37875.
[http://dx.doi.org/10.1074/jbc.M007302200] [PMID: 10993902]
[10]
Bai, L.; Romanova, E.V.; Sweedler, J.V. Distinguishing endogenous D-amino acid-containing neuropeptides in individual neurons using tandem mass spectrometry.Anal. Chem.,2011,83(7), 2794-2800.
[http://dx.doi.org/10.1021/ac200142m] [PMID: 21388150]
[11]
Tao, Y.; Quebbemann, N.R.; Julian, R.R. Discriminating D-amino acid-containing peptide epimers by radical-directed dissociation mass spectrometry.Anal. Chem.,2012,84(15), 6814-6820.
[http://dx.doi.org/10.1021/ac3013434] [PMID: 22812429]
[12]
Jia, C.; Lietz, C.B.; Yu, Q.; Li, L. Site-specific characterization of (D)-amino acid containing peptide epimers by ion mobility spectrometry.Anal. Chem.,2014,86(6), 2972-2981.
[http://dx.doi.org/10.1021/ac4033824] [PMID: 24328107]
[13]
Koehbach, J.; Gruber, C.W.; Becker, C.; Kreil, D.P.; Jilek, A. MALDI TOF/TOF-based approach for the identification of D-amino acids in biologically active peptides and proteins.J. Proteome Res.,2016,15(5), 1487-1496.
[http://dx.doi.org/10.1021/acs.jproteome.5b01067] [PMID: 26985971]
[14]
Livnat, I.; Tai, H.C.; Jansson, E.T.; Bai, L.; Romanova, E.V.; Chen, T.T.; Yu, K.; Chen, S.A.; Zhang, Y.; Wang, Z.Y.; Liu, D.D.; Weiss, K.R.; Jing, J.; Sweedler, J.V. A D-amino acid-containing neuropeptide discovery funnel.Anal. Chem.,2016,88(23), 11868-11876.
[http://dx.doi.org/10.1021/acs.analchem.6b03658] [PMID: 27788334]
[15]
Tai, H.C.; Checco, J.W.; Sweedler, J.V. Non-targeted identification of D-amino acid-containing peptides through enzymatic screening, chiral amino acid analysis, and LC-MS. methods.Methods Mol. Biol.,2018,1719, 107-118.
[http://dx.doi.org/10.1007/978-1-4939-7537-2_7] [PMID: 29476507]
[16]
Ewing, M.A.; Wang, J.; Sheeley, S.A.; Sweedler, J.V. Detecting D-amino acid-containing neuropeptides using selective enzymatic digestion.Anal. Chem.,2008,80(8), 2874-2880.
[http://dx.doi.org/10.1021/ac7025173] [PMID: 18341354]
[17]
Kamatani, Y.; Minakata, H.; Kenny, P.T.; Iwashita, T.; Watanabe, K.; Funase, K.; Sun, X.P.; Yongsiri, A.; Kim, K.H.; Novales-Li, P.; Novales, E.T.; Canapi, C.G.; Takeuchi, H.; Nomotol, K. Achatin-I, an endogenous neuroexcitatory tetrapeptide from Achatina fulica Férussac containing a D-amino acid residue.Biochem. Biophys. Res. Commun.,1989,160(3), 1015-1020.
[http://dx.doi.org/10.1016/S0006-291X(89)80103-2] [PMID: 2597281]
[18]
Kamatani, Y.; Minakata, H.; Iwashita, T.; Nomoto, K. In, Y.; Doi, M.; Ishida, T. Molecular conformation of achatin-I, an endogenous neuropeptide containing D-amino acid residue. X-ray crystal structure of its neutral form.FEBS Lett.,1990,276(1-2), 95-97.
[http://dx.doi.org/10.1016/0014-5793(90)80516-L] [PMID: 1979949]
[19]
Kimura, T.; Okamura, E.; Matubayasi, N.; Asami, K.; Nakahara, M. NMR study on the binding of neuropeptide achatin-I to phospholipid bilayer: the equilibrium, location, and peptide conformation.Biophys. J.,2004,87(1), 375-385.
[http://dx.doi.org/10.1529/biophysj.103.038950] [PMID: 15240472]
[20]
Kimura, T.; Ninomiya, K.; Futaki, S. NMR investigation of the electrostatic effect in binding of a neuropeptide, achatin-I, to phosphatidylcholine bilayers.J. Phys. Chem. B,2007,111(14), 3831-3838.
[http://dx.doi.org/10.1021/jp067100x] [PMID: 17388516]
[21]
Ohta, N.; Kubota, I.; Takao, T.; Shimonishi, Y.; Yasuda-Kamatani, Y.; Minakata, H.; Nomoto, K.; Muneoka, Y.; Kobayashi, M. Fulicin, a novel neuropeptide containing a D-amino acid residue isolated from the ganglia of Achatina fulica.Biochem. Biophys. Res. Commun.,1991,178(2), 486-493.
[http://dx.doi.org/10.1016/0006-291X(91)90133-R] [PMID: 1859408]
[22]
Fujisawa, Y.; Masuda, K.; Minakata, H. Fulicin regulates the female reproductive organs of the snail, Achatina fulica.Peptides,2000,21(8), 1203-1208.
[http://dx.doi.org/10.1016/S0196-9781(00)00260-6] [PMID: 11035206]
[23]
Fujita, K.; Minakata, H.; Nomoto, K.; Furukawa, Y.; Kobayashi, M. Structure-activity relations of fulicin, a peptide containing a D-amino acid residue.Peptides,1995,16(4), 565-568.
[http://dx.doi.org/10.1016/0196-9781(95)00022-C] [PMID: 7479285]
[24]
Yasuda-Kamatani, Y.; Kobayashi, M.; Yasuda, A.; Fujita, T.; Minakata, H.; Nomoto, K.; Nakamura, M.; Sakiyama, F. A novel D-amino acid-containing peptide, fulyal, coexists with fulicin gene-related peptides in Achatina atria.Peptides,1997,18(3), 347-354.
[http://dx.doi.org/10.1016/S0196-9781(96)00343-9] [PMID: 9145419]
[25]
Morishita, F.; Nakanishi, Y.; Kaku, S.; Furukawa, Y.; Ohta, S.; Hirata, T.; Ohtani, M.; Fujisawa, Y.; Muneoka, Y.; Matsushima, O. A novel D-amino-acid-containing peptide isolated from Aplysia heart.Biochem. Biophys. Res. Commun.,1997,240(2), 354-358.
[http://dx.doi.org/10.1006/bbrc.1997.7659] [PMID: 9388481]
[26]
Kanemaru, K.; Morishita, F.; Matsushima, O.; Furukawa, Y. Aplysia cardioactive peptide (NdWFamide) enhances the L-type Ca2+ current of Aplysia ventricular myocytes.Peptides,2002,23(11), 1991-1998.
[http://dx.doi.org/10.1016/S0196-9781(02)00186-9] [PMID: 12431737]
[27]
Bai, L.; Livnat, I.; Romanova, E.V.; Alexeeva, V.; Yau, P.M.; Vilim, F.S.; Weiss, K.R.; Jing, J.; Sweedler, J.V. Characterization of GdFFD, a D-amino acid-containing neuropeptide that functions as an extrinsic modulator of the Aplysia feeding circuit.J. Biol. Chem.,2013,288(46), 32837-32851.
[http://dx.doi.org/10.1074/jbc.M113.486670] [PMID: 24078634]
[28]
Yang, C.Y.; Yu, K.; Wang, Y.; Chen, S.A.; Liu, D.D.; Wang, Z.Y.; Su, Y.N.; Yang, S.Z.; Chen, T.T.; Livnat, I.; Vilim, F.S.; Cropper, E.C.; Weiss, K.R.; Sweedler, J.V.; Jing, J. Aplysia Locomotion: Network and Behavioral Actions of GdFFD, a D-Amino Acid-Containing Neuropeptide.PLoS One,2016,11(1) e0147335
[http://dx.doi.org/10.1371/journal.pone.0147335] [PMID: 26796097]
[29]
Checco, J.W.; Zhang, G.; Yuan, W.D.; Yu, K.; Yin, S.Y.; Roberts-Galbraith, R.H.; Yau, P.M.; Romanova, E.V.; Jing, J.; Sweedler, J.V. Molecular and physiological characterization of a receptor for D-amino acid-containing neuropeptides.ACS Chem. Biol.,2018a,13(5), 1343-1352.
[http://dx.doi.org/10.1021/acschembio.8b00167] [PMID: 29543428]
[30]
Do, T.D.; Checco, J.W.; Tro, M.; Shea, J.E.; Bowers, M.T.; Sweedler, J.V. Conformational investigation of the structure-activity relationship of GdFFD and its analogues on an achatin-like neuropeptide receptor of Aplysia californica involved in the feeding circuit.Phys. Chem. Chem. Phys.,2018,20(34), 22047-22057.
[http://dx.doi.org/10.1039/C8CP03661F] [PMID: 30112548]
[31]
Checco, J.W.; Zhang, G.; Yuan, W.D.; Le, Z.W.; Jing, J.; Sweedler, J.V. Aplysia allatotropin-related peptide and its newly identified d amino acid-containing epimer both activate a receptor and a neuronal target.J. Biol. Chem.,2018b,293(43), 16862-16873.
[http://dx.doi.org/10.1074/jbc.RA118.004367] [PMID: 30194283]
[32]
Tan, K.C.; Wakimoto, T.; Takada, K.; Ohtsuki, T.; Uchiyama, N.; Goda, Y.; Abe, I. Cycloforskamide, a cytotoxic macrocyclic peptide from the sea slug Pleurobranchus forskalii.J. Nat. Prod.,2013,76(7), 1388-1391.
[http://dx.doi.org/10.1021/np400404r] [PMID: 23848233]
[33]
Fujisawa, Y.; Ikeda, T.; Nomoto, K.; Yasuda-Kamatani, Y.; Minakata, H.; Kenny, P.T.M.; Kubota, I.; Muneoka, Y. The FMRFamide-related decapeptide of Mytilus contains a D-amino acid residue.Comp. Biochem. Physiol. C. Comp. Pharmacol. Toxicol.,1992,102(1), 91-95.
[http://dx.doi.org/10.1016/0742-8413(92)90049-D] [PMID: 1358533]
[34]
Jimenéz, E.C.; Olivera, B.M.; Gray, W.R.; Cruz, L.J. Contryphan is a D-tryptophan-containing Conus peptide.J. Biol. Chem.,1996,271(45), 28002-28005.
[http://dx.doi.org/10.1074/jbc.271.45.28002] [PMID: 8910408]
[35]
Jimenez, E.C.; Craig, A.G.; Watkins, M.; Hillyard, D.R.; Gray, W.R.; Gulyas, J.; Rivier, J.E.; Cruz, L.J.; Olivera, B.M. Bromocontryphan: post-translational bromination of tryptophan.Biochemistry,1997,36(5), 989-994.
[http://dx.doi.org/10.1021/bi962840p] [PMID: 9033387]
[36]
Jacobsen, R.; Jimenez, E.C.; Grilley, M.; Watkins, M.; Hillyard, D.; Cruz, L.J.; Olivera, B.M. The contryphans, a D-tryptophan-containing family of Conus peptides: interconversion between conformers.J. Pept. Res.,1998,51(3), 173-179.
[http://dx.doi.org/10.1111/j.1399-3011.1998.tb01213.x] [PMID: 9531419]
[37]
Pallaghy, P.K.; Melnikova, A.P.; Jimenez, E.C.; Olivera, B.M.; Norton, R.S. Solution structure of contryphan-R, a naturally occurring disulfide-bridged octapeptide containing D-tryptophan: comparison with protein loops.Biochemistry,1999,38(35), 11553-11559.
[http://dx.doi.org/10.1021/bi990685j] [PMID: 10471307]
[38]
Pallaghy, P.K.; He, W.; Jimenez, E.C.; Olivera, B.M.; Norton, R.S. Structures of the contryphan family of cyclic peptides. Role of electrostatic interactions in cis-trans isomerism.Biochemistry,2000,39(42), 12845-12852.
[http://dx.doi.org/10.1021/bi0010930] [PMID: 11041849]
[39]
Jacobsen, R.B.; Jimenez, E.C.; De la Cruz, R.G.; Gray, W.R.; Cruz, L.J.; Olivera, B.M. A novel D-leucine-containing Conus peptide: diverse conformational dynamics in the contryphan family.J. Pept. Res.,1999,54(2), 93-99.
[http://dx.doi.org/10.1034/j.1399-3011.1999.00093.x] [PMID: 10461743]
[40]
Pi, C.; Liu, Y.; Peng, C.; Jiang, X.; Liu, J.; Xu, B.; Yu, X.; Yu, Y.; Jiang, X.; Wang, L.; Dong, M.; Chen, S.; Xu, A.L. Analysis of expressed sequence tags from the venom ducts of Conus striatus: focusing on the expression profile of conotoxins.Biochimie,2006a,88(2), 131-140.
[http://dx.doi.org/10.1016/j.biochi.2005.08.001] [PMID: 16183187]
[41]
Hu, H.; Bandyopadhyay, P.K.; Olivera, B.M.; Yandell, M. Characterization of the Conus bullatus genome and its venom-duct transcriptome.BMC Genomics,2011,12, 60-74.
[http://dx.doi.org/10.1186/1471-2164-12-60] [PMID: 21266071]
[42]
Jimenez, E.C.; Watkins, M.; Juszczak, L.J.; Cruz, L.J.; Olivera, B.M. Contryphans from Conus textile venom ducts.Toxicon,2001,39(6), 803-808.
[http://dx.doi.org/10.1016/S0041-0101(00)00210-5] [PMID: 11137539]
[43]
Hansson, K.; Ma, X.; Eliasson, L.; Czerwiec, E.; Furie, B.; Furie, B.C.; Rorsman, P.; Stenflo, J. The first gamma-carboxyglutamic acid-containing contryphan. A selective L-type calcium ion channel blocker isolated from the venom of Conus marmoreus.J. Biol. Chem.,2004,279(31), 32453-32463.
[http://dx.doi.org/10.1074/jbc.M313825200] [PMID: 15155730]
[44]
Grant, M.A.; Hansson, K.; Furie, B.C.; Furie, B.; Stenflo, J.; Rigby, A.C. The metal-free and calcium-bound structures of a gamma-carboxyglutamic acid-containing contryphan from Conus marmoreus, glacontryphan-M.J. Biol. Chem.,2004,279(31), 32464-32473.
[http://dx.doi.org/10.1074/jbc.M313826200] [PMID: 15155731]
[45]
Gowd, K.H.; Sabareesh, V.; Sudarslal, S.; Iengar, P.; Franklin, B.; Fernando, A.; Dewan, K.; Ramaswami, M.; Sarma, S.P.; Sikdar, S.; Balaram, P.; Krishnan, K.S. Novel peptides of therapeutic promise from Indian Conidae.Ann. N. Y. Acad. Sci.,2005,1056, 462-473.
[http://dx.doi.org/10.1196/annals.1352.022] [PMID: 16387709]
[46]
Sabareesh, V.; Gowd, K.H.; Ramasamy, P.; Sudarslal, S.; Krishnan, K.S.; Sikdar, S.K.; Balaram, P. Characterization of contryphans from Conus loroisii and Conus amadis that target calcium channels.Peptides,2006,27(11), 2647-2654.
[http://dx.doi.org/10.1016/j.peptides.2006.07.009] [PMID: 16945451]
[47]
Robinson, S.D.; Safavi-Hemami, H.; McIntosh, L.D.; Purcell, A.W.; Norton, R.S.; Papenfuss, A.T. Diversity of conotoxin gene superfamilies in the venomous snail, Conus victoriae.PLoS One,2014,9(2) e87648
[http://dx.doi.org/10.1371/journal.pone.0087648]] [PMID: 24505301]
[48]
Drane, S.B.; Robinson, S.D.; MacRaild, C.A.; Chhabra, S.; Chittoor, B.; Morales, R.A.; Leung, E.W.; Belgi, A.; Espino, S.S.; Olivera, B.M.; Robinson, A.J.; Chalmers, D.K.; Norton, R.S. Structure and activity of contryphan-Vc2: Importance of the d-amino acid residue.Toxicon,2017,129, 113-122.
[http://dx.doi.org/10.1016/j.toxicon.2017.02.012] [PMID: 28216409]
[49]
Vijayasarathy, M.; Basheer, S.M.; Franklin, J.B.; Balaram, P. Contryphan genes and mature peptides in the venom of nine cone snail species by transcriptomic and mass spectrometric analysis.J. Proteome Res.,2017,16(2), 763-772.
[http://dx.doi.org/10.1021/acs.jproteome.6b00776] [PMID: 28152596]
[50]
Massilia, G.R.; Schininà, M.E.; Ascenzi, P.; Polticelli, F. Contryphan-Vn: a novel peptide from the venom of the Mediterranean snail Conus ventricosus.Biochem. Biophys. Res. Commun.,2001,288(4), 908-913.
[http://dx.doi.org/10.1006/bbrc.2001.5833] [PMID: 11688995]
[51]
Eliseo, T.; Cicero, D.O.; Romeo, C.; Schininà, M.E.; Massilia, G.R.; Polticelli, F.; Ascenzi, P.; Paci, M. Solution structure of the cyclic peptide contryphan-Vn, a Ca2+-dependent K+ channel modulator.Biopolymers,2004,74(3), 189-198.
[http://dx.doi.org/10.1002/bip.20025] [PMID: 15150794]
[52]
Massilia, G.R.; Eliseo, T.; Grolleau, F.; Lapied, B.; Barbier, J.; Bournaud, R.; Molgó, J.; Cicero, D.O.; Paci, M.; Schininà, M.E.; Ascenzi, P.; Polticelli, F. Contryphan-Vn: a modulator of Ca2+-dependent K+ channels.Biochem. Biophys. Res. Commun.,2003,303(1), 238-246.
[http://dx.doi.org/10.1016/S0006-291X(03)00331-0] [PMID: 12646193]
[53]
Pi, C.; Liu, J.; Peng, C.; Liu, Y.; Jiang, X.; Zhao, Y.; Tang, S.; Wang, L.; Dong, M.; Chen, S.; Xu, A. Diversity and evolution of conotoxins based on gene expression profiling of Conus litteratus.Genomics,2006b,88(6), 809-819.
[http://dx.doi.org/10.1016/j.ygeno.2006.06.014] [PMID: 16908117]
[54]
Thakur, S.S.; Balaram, P. Rapid mass spectral identification of contryphans. Detection of characteristic peptide ions by fragmentation of intact disulfide-bonded peptides in crude venom.Rapid Commun. Mass Spectrom.,2007,21(21), 3420-3426.
[http://dx.doi.org/10.1002/rcm.3225] [PMID: 17902199]
[55]
Lluisma, A.O.; Milash, B.A.; Moore, B.; Olivera, B.M.; Bandyopadhyay, P.K. Novel venom peptides from the cone snail Conus pulicarius discovered through next-generation sequencing of its venom duct transcriptome.Mar. Genomics,2012,5, 43-51.
[http://dx.doi.org/10.1016/j.margen.2011.09.002] [PMID: 22325721]
[56]
Rajesh, R.P. Novel M-Superfamily and T-Superfamily conotoxins and contryphans from the vermivorous snail Conus figulinus.J. Pept. Sci.,2015,21(1), 29-39.
[http://dx.doi.org/10.1002/psc.2715] [PMID: 25420928]
[57]
Han, P.; Cao, Y.; Liu, S.; Dai, X.; Yao, G.; Fan, C.; Wu, W.; Chen, J. Contryphan-Bt: A pyroglutamic acid containing conopeptide isolated from the venom of Conus betulinus.Toxicon,2017,135, 17-23.
[http://dx.doi.org/10.1016/j.toxicon.2017.05.022] [PMID: 28554718]
[58]
Jimenez, E.C.; Shetty, R.P.; Lirazan, M.; Rivier, J.; Walker, C.; Abogadie, F.C.; Yoshikami, D.; Cruz, L.J.; Olivera, B.M. Novel excitatory Conus peptides define a new conotoxin superfamily.J. Neurochem.,2003,85(3), 610-621.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01685.x] [PMID: 12694387]
[59]
Buczek, O.; Yoshikami, D.; Watkins, M.; Bulaj, G.; Jimenez, E.C.; Olivera, B.M. Characterization of D-amino-acid-containing excitatory conotoxins and redefinition of the I-conotoxin superfamily.FEBS J.,2005a,272(16), 4178-4188.
[http://dx.doi.org/10.1111/j.1742-4658.2005.04830.x] [PMID: 16098199]
[60]
Buczek, O.; Yoshikami, D.; Bulaj, G.; Jimenez, E.C.; Olivera, B.M. Post-translational amino acid isomerization: a functionally important D-amino acid in an excitatory peptide.J. Biol. Chem.,2005b,280(6), 4247-4253.
[http://dx.doi.org/10.1074/jbc.M405835200] [PMID: 15561705]
[61]
Buczek, O.; Wei, D.; Babon, J.J.; Yang, X.; Fiedler, B.; Chen, P.; Yoshikami, D.; Olivera, B.M.; Bulaj, G.; Norton, R.S. Structure and sodium channel activity of an excitatory I1-superfamily conotoxin.Biochemistry,2007,46(35), 9929-9940.
[http://dx.doi.org/10.1021/bi700797f] [PMID: 17696362]
[62]
Fiedler, B.; Zhang, M.M.; Buczek, O.; Azam, L.; Bulaj, G.; Norton, R.S.; Olivera, B.M.; Yoshikami, D. Specificity, affinity and efficacy of iota-conotoxin RXIA, an agonist of voltage-gated sodium channels Na(V)1.2, 1.6 and 1.7.Biochem. Pharmacol.,2008,75(12), 2334-2344.
[http://dx.doi.org/10.1016/j.bcp.2008.03.019] [PMID: 18486102]
[63]
Pisarewicz, K.; Mora, D.; Pflueger, F.C.; Fields, G.B.; Marí, F. Polypeptide chains containing D-gamma-hydroxyvaline.J. Am. Chem. Soc.,2005,127(17), 6207-6215.
[http://dx.doi.org/10.1021/ja050088m] [PMID: 15853325]
[64]
Dutertre, S.; Lumsden, N.G.; Alewood, P.F.; Lewis, R.J. Isolation and characterisation of conomap-Vt, a D-amino acid containing excitatory peptide from the venom of a vermivorous cone snail.FEBS Lett.,2006,580(16), 3860-3866.
[http://dx.doi.org/10.1016/j.febslet.2006.06.011] [PMID: 16797543]
[65]
Han, Y.; Huang, F.; Jiang, H.; Liu, L.; Wang, Q.; Wang, Y.; Shao, X.; Chi, C.; Du, W.; Wang, C. Purification and structural characterization of a D-amino acid-containing conopeptide, conomarphin, from Conus marmoreus.FEBS J.,2008,275(9), 1976-1987.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06352.x] [PMID: 18355315]
[66]
Zhang, L.; Shao, X.; Chi, C.; Wang, C. Two short D-Phe-containing cysteine-free conopeptides from Conus marmoreus.Peptides,2010,31(1), 177-179.
[http://dx.doi.org/10.1016/j.peptides.2009.10.017] [PMID: 19879909]
[67]
Wu, X.C.; Zhou, M.; Peng, C.; Shao, X.X.; Guo, Z.Y.; Chi, C.W. Novel conopeptides in a form of disulfide-crosslinked dimer.Peptides,2010,31(6), 1001-1006.
[http://dx.doi.org/10.1016/j.peptides.2010.03.010] [PMID: 20307606]
[68]
Mendoza, C.B.; Masacupan, D.J.M.; Batoctoy, D.C.R.; Yu, E.T.; Lluisma, A.O.; Salvador-Reyes, L.A. Conomarphins cause paralysis in mollusk: Critical and tunable structural elements for bioactivity.J. Pept. Sci.,2019,25(7) e3179
[http://dx.doi.org/10.1002/psc.3179] [PMID: 31309676]
[69]
Zhang, Z.Y.; Ma, N.; Tao, L.J.; Gong, X.Y.; Ye, W.C.; Wang, L. Linear peptides containing D-leucine with neuroprotective activities from the leech Whitmania pigra Whitman.J. Nat. Prod.,2019,82(8), 2349-2353.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00322] [PMID: 31361480]
[70]
Teramoto, T.; Kuwada, M.; Niidome, T.; Sawada, K.; Nishizawa, Y.; Katayama, K. A novel peptide from funnel web spider venom, omega-Aga-TK, selectively blocks, P-type calcium channels.Biochem. Biophys. Res. Commun.,1993,196(1), 134-140.
[http://dx.doi.org/10.1006/bbrc.1993.2225] [PMID: 8216284]
[71]
Kuwada, M.; Teramoto, T.; Kumagaye, K.Y.; Nakajima, K.; Watanabe, T.; Kawai, T.; Kawakami, Y.; Niidome, T.; Sawada, K.; Nishizawa, Y. Omega-agatoxin-TK containing D-serine at position 46, but not synthetic omega-[L-Ser46]agatoxin-TK, exerts blockade of P-type calcium channels in cerebellar Purkinje neurons.Mol. Pharmacol.,1994,46(4), 587-593.
[PMID:7969037]
[72]
Williams, D.H.; Santikarn, S.; De Angelis, F.; Smith, R.J.; Reid, D.G.; Oelrichs, P.B.; MacLeod, J.K. The structure of a toxic octapeptide from the larvae of sawfly.J. Chem. Soc. Perkin Trans.,1983,1, 1869-1878.
[http://dx.doi.org/10.1039/p19830001869]
[73]
Kannan, R.; Oelrichs, P.B.; Thamsborg, S.M.; Williams, D.H. Identification of the octapeptide lophyrotomin in the European birch sawfly (Arge pullata).Toxicon,1988,26(2), 224-226.
[http://dx.doi.org/10.1016/0041-0101(88)90177-8] [PMID: 3363571]
[74]
Oelrichs, P.B.; MacLeod, J.K.; Seawright, A.A.; Moore, M.R.; Ng, J.C.; Dutra, F.; Riet-Corŕea, F.; Mendez, M.C.; Thamsborg, S.M. Unique toxic peptides isolated from sawfly larvae in three continents.Toxicon,1999,37(3), 537-544.
[http://dx.doi.org/10.1016/S0041-0101(98)00192-5] [PMID: 10080356]
[75]
Oelrichs, P.B.; MacLeod, J.K.; Seawright, A.A.; Grace, P.B. Isolation and identification of the toxic peptides from Lophyrotoma zonalis (Pergidae) sawfly larvae.Toxicon,2001,39(12), 1933-1936.
[http://dx.doi.org/10.1016/S0041-0101(01)00144-1] [PMID: 11600157]
[76]
Soyez, D.; Van Herp, F.; Rossier, J.; Le Caer, J.P.; Tensen, C.P.; Lafont, R. Evidence for a conformational polymorphism of invertebrate neurohormones. D-amino acid residue in crustacean hyperglycemic peptides.J. Biol. Chem.,1994,269(28), 18295-18298.
[PMID:8034574]
[77]
Yasuda, A.; Yasuda, Y.; Fujita, T.; Naya, Y. Characterization of crustacean hyperglycemic hormone from the crayfish (Procambarus clarkii): multiplicity of molecular forms by stereoinversion and diverse functions.Gen. Comp. Endocrinol.,1994,95(3), 387-398.
[http://dx.doi.org/10.1006/gcen.1994.1138] [PMID: 7821776]
[78]
Huberman, A.; Aguilar, M.B.; Brew, K.; Shabanowitz, J.; Hunt, D.F. Primary structure of the major isomorph of the crustacean hyperglycemic hormone (CHH-I) from the sinus gland of the Mexican crayfish Procambarus bouvieri (Ortmann): interspecies comparison.Peptides,1993,14(1), 7-16.
[http://dx.doi.org/10.1016/0196-9781(93)90004-Z] [PMID: 8441709]
[79]
Aguilar, M.B.; Soyez, D.; Falchetto, R.; Arnott, D.; Shabanowitz, J.; Hunt, D.F.; Huberman, A. Amino acid sequence of the minor isomorph of the crustacean hyperglycemic hormone (CHH-II) of the Mexican crayfish Procambarus bouvieri (Ortmann): presence of a D-amino acid.Peptides,1995,16(8), 1375-1383.
[http://dx.doi.org/10.1016/0196-9781(95)02024-1] [PMID: 8745046]
[80]
Salib, M.N.; Molinski, T.F. Cyclic hexapeptide dimers, Antatollamides A and B, from the ascidian Didemnum molle. A tryptophan-derived auxiliary for L- and D-amino acid assignments.J. Org. Chem.,2017,82(19), 10181-10187.
[http://dx.doi.org/10.1021/acs.joc.7b01659] [PMID: 28846849]
[81]
Montecucchi, P.C.; de Castiglione, R.; Piani, S.; Gozzini, L.; Erspamer, V. Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from the skin of Phyllomedusa sauvagei.Int. J. Pept. Protein Res.,1981a,17(3), 275-283.
[http://dx.doi.org/10.1111/j.1399-3011.1981.tb01993.x] [PMID: 7287299]
[82]
Montecucchi, P.C.; de Castiglione, R.; Erspamer, V. Identification of dermorphin and Hyp6-dermorphin in skin extracts of the Brazilian frog Phyllomedusa rhodei.Int. J. Pept. Protein Res.,1981b,17(3), 316-321.
[http://dx.doi.org/10.1111/j.1399-3011.1981.tb01997.x] [PMID: 7287302]
[83]
Richter, K.; Egger, R.; Negri, L.; Corsi, R.; Severini, C.; Kreil, G. cDNAs encoding [D-Ala2]deltorphin precursors from skin of Phyllomedusa bicolor also contain genetic information for three dermorphin-related opioid peptides.Proc. Natl. Acad. Sci. USA,1990,87(12), 4836-4839.
[http://dx.doi.org/10.1073/pnas.87.12.4836] [PMID: 2352951]
[84]
Mignogna, G.; Severini, C.; Simmaco, M.; Negri, L.; Erspamer, G.F.; Kreil, G.; Barra, D. Identification and characterization of two dermorphins from skin extracts of the Amazonian frog Phyllomedusa bicolor.FEBS Lett.,1992,302(2), 151-154.
[http://dx.doi.org/10.1016/0014-5793(92)80427-I] [PMID: 1633846]
[85]
Kreil, G.; Barra, D.; Simmaco, M.; Erspamer, V.; Erspamer, G.F.; Negri, L.; Severini, C.; Corsi, R.; Melchiorri, P. Deltorphin, a novel amphibian skin peptide with high selectivity and affinity for delta opioid receptors.Eur. J. Pharmacol.,1989,162(1), 123-128.
[http://dx.doi.org/10.1016/0014-2999(89)90611-0] [PMID: 2542051]
[86]
Mor, A.; Delfour, A.; Sagan, S.; Amiche, M.; Pradelles, P.; Rossier, J.; Nicolas, P. Isolation of dermenkephalin from amphibian skin, a high-affinity delta-selective opioid heptapeptide containing a D-amino acid residue.FEBS Lett.,1989,255(2), 269-274.
[http://dx.doi.org/10.1016/0014-5793(89)81104-4] [PMID: 2551734]
[87]
Erspamer, V.; Melchiorri, P.; Falconieri-Erspamer, G.; Negri, L.; Corsi, R.; Severini, C.; Barra, D.; Simmaco, M.; Kreil, G. Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites.Proc. Natl. Acad. Sci. USA,1989,86(13), 5188-5192.
[http://dx.doi.org/10.1073/pnas.86.13.5188] [PMID: 2544892]
[88]
Kreil, G. Peptides containing a D-amino acid from frogs and molluscs.J. Biol. Chem.,1994,269(15), 10967-10970.
[PMID:8157620]
[89]
Barra, D.; Mignogna, G.; Simmaco, M.; Pucci, P.; Severini, C.; Falconieri-Erspamer, G.; Negri, L.; Erspamer, V. [D-Leu2]deltorphin, a 17 amino acid opioid peptide from the skin of the Brazilian hylid frog, Phyllomedusa burmeisteri.Peptides,1994,15(2), 199-202.
[http://dx.doi.org/10.1016/0196-9781(94)90002-7] [PMID: 8008623]
[90]
Wechselberger, C.; Severini, C.; Kreil, G.; Negri, L. A new opioid peptide predicted from cloned cDNAs from skin of Pachymedusa dacnicolor and Agalychnis annae.FEBS Lett.,1998,429(1), 41-43.
[http://dx.doi.org/10.1016/S0014-5793(98)00545-6] [PMID: 9657380]
[91]
Amiche, M.; Sagan, S.; Mor, A.; Delfour, A.; Nicolas, P. Dermenkephalin (Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2): a potent and fully specific agonist for the delta opioid receptor.Mol. Pharmacol.,1989,35(6), 774-779.
[PMID:2543911]
[92]
Sagan, S.; Amiche, M.; Delfour, A.; Mor, A.; Camus, A.; Nicolas, P. Molecular determinants of receptor affinity and selectivity of the natural delta-opioid agonist, dermenkephalin.J. Biol. Chem.,1989,264(29), 17100-17106.
[PMID:2551895]
[93]
Simmaco, M.; Barra, D.; Chiarini, F.; Noviello, L.; Melchiorri, P.; Kreil, G.; Richter, K. A family of bombinin-related peptides from the skin of Bombina variegata.Eur. J. Biochem.,1991,199(1), 217-222.
[http://dx.doi.org/10.1111/j.1432-1033.1991.tb16112.x] [PMID: 1712299]
[94]
Mignogna, G.; Simmaco, M.; Kreil, G.; Barra, D. Antibacterial and haemolytic peptides containing D-alloisoleucine from the skin of Bombina variegata.EMBO J.,1993,12(12), 4829-4832.
[http://dx.doi.org/10.1002/j.1460-2075.1993.tb06172.x] [PMID: 8223491]
[95]
Mijiddorj, B.; Kaneda, S.; Sato, H.; Kitahashi, Y.; Javkhlantugs, N.; Naito, A.; Ueda, K.; Kawamura, I. The role of d-allo-isoleucine in the deposition of the anti-Leishmania peptide bombinin H4 as revealed by 31P solid-state NMR, VCD spectroscopy, and MD simulation.Biochim. Biophys. Acta. Proteins Proteomics,2018,1866(7), 789-798.
[http://dx.doi.org/10.1016/j.bbapap.2018.01.005] [PMID: 29337209]
[96]
de Plater, G.M.; Martin, R.L.; Milburn, P.J. A C-type natriuretic peptide from the venom of the platypus (Ornithorhynchus anatinus): structure and pharmacology.Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol.,1998,120(1), 99-110.
[http://dx.doi.org/10.1016/S0742-8413(98)00030-9] [PMID: 9827022]
[97]
Torres, A.M.; Menz, I.; Alewood, P.F.; Bansal, P.; Lahnstein, J.; Gallagher, C.H.; Kuchel, P.W. D-Amino acid residue in the C-type natriuretic peptide from the venom of the mammal, Ornithorhynchus anatinus, the Australian platypus.FEBS Lett.,2002,524(1-3), 172-176.
[http://dx.doi.org/10.1016/S0014-5793(02)03050-8] [PMID: 12135762]
[98]
Torres, A.M.; Wang, X.; Fletcher, J.I.; Alewood, D.; Alewood, P.F.; Smith, R.; Simpson, R.J.; Nicholson, G.M.; Sutherland, S.K.; Gallagher, C.H.; King, G.F.; Kuchel, P.W. Solution structure of a defensin-like peptide from platypus venom.Biochem. J.,1999,341(Pt 3), 785-794.
[http://dx.doi.org/10.1042/bj3410785] [PMID: 10417345]
[99]
Torres, A.M.; Tsampazi, C.; Geraghty, D.P.; Bansal, P.S.; Alewood, P.F.; Kuchel, P.W. D-amino acid residue in a defensin-like peptide from platypus venom: effect on structure and chromatographic properties.Biochem. J.,2005,391(Pt 2), 215-220.
[http://dx.doi.org/10.1042/BJ20050900] [PMID: 16033333]
[100]
Ha, S.; Kim, I.; Takata, T.; Kinouchi, T.; Isoyama, M.; Suzuki, M.; Fujii, N. Identification of ᴅ-amino acid-containing peptides in human serum.PLoS One,2017,12(12) e0189972
[http://dx.doi.org/10.1371/journal.pone.0189972] [PMID: 29253022]
[101]
Hotchkiss, R.D.; Dubos, R.J. The isolation of bactericidal substances from cultures of Bacillus brevis.J. Biol. Chem.,1941,141, 155-162.
[102]
Lipmann, F.; Hotchkiss, R.D.; Dubos, R.J. The occurrence of D-amino acids in gramicidin and tyrocidine.J. Biol. Chem.,1941,141, 163-169.
[103]
Wallace, B.A. Structure of gramicidin A.Biophys. J.,1986,49(1), 295-306.
[http://dx.doi.org/10.1016/S0006-3495(86)83642-6] [PMID: 2420381]
[104]
Loll, P.J.; Upton, E.C.; Nahoum, V.; Economou, N.J.; Cocklin, S. The high resolution structure of tyrocidine A reveals an amphipathic dimer.Biochim. Biophys. Acta,2014,1838(5), 1199-1207.
[http://dx.doi.org/10.1016/j.bbamem.2014.01.033] [PMID: 24530898]
[105]
Broccardo, M.; Erspamer, V.; Falconieri Erspamer, G.; Improta, G.; Linari, G.; Melchiorri, P.; Montecucchi, P.C. Pharmacological data on dermorphins, a new class of potent opioid peptides from amphibian skin.Br. J. Pharmacol.,1981,73(3), 625-631.
[http://dx.doi.org/10.1111/j.1476-5381.1981.tb16797.x] [PMID: 7195758]
[106]
Basso, N.; Marcelli, M.; Ginaldi, A.; De Marco, M. Intrathecal dermorphine in postoperative analgesia.Peptides,1985,6(Suppl. 3), 177-179.
[http://dx.doi.org/10.1016/0196-9781(85)90371-7] [PMID: 3831962]
[107]
Hesselink, J.M.K.; Schatman, M.E. Rediscovery of old drugs: the forgotten case of dermorphin for postoperative pain and palliation.J. Pain Res.,2018,11, 2991-2995.
[http://dx.doi.org/10.2147/JPR.S186082] [PMID: 30538538]
[108]
Liebregts, R.; Keppel Hesselink, J.M.; Kopsky, D.J. Dermorphin: A missed palliative care opportunity for intrathecal therapy in oncological patients?Pain Med.,2019,20(10), 2077-2079.
[http://dx.doi.org/10.1093/pm/pnz080] [PMID: 30986300]

Rights & PermissionsPrintCite

Current Protein & Peptide Science

Title:D-Amino Acids in Peptides from Animals, Including Human: Occurrence, Structure, Bioactivity and Pharmacology

Volume: 21Issue: 6

Author(s):Elsie C. Jimenez*

Affiliation:

  • Department of Physical Sciences, College of Science, University of the Philippines Baguio, Baguio City 2600,Philippines

Keywords:D-amino acid, achatin, conotoxin, agatoxin, crustacean hyperglycemic hormone, dermorphin and deltorphin, natriureticand defensin-like peptides, fibrinopeptide.

Abstract: All life forms typically possess homochirality, with rare exceptions. In the case of peptidesand proteins, only L-amino acids are known to be encoded by genes. Nevertheless, D-amino acids havebeen identified in a variety of peptides, synthesized by animal cells. They include neuroexcitatory andneuroprotective peptides, cardioexcitatory peptides, hyperglycemic hormones, opioid peptides, antimicrobialpeptides, natriuretic and defensin-like peptides, and fibrinopeptides. This article is a review oftheir occurrence, structure and bioactivity. It further explores the pharmacology and potential medicalapplications of some of the peptides.

Export Options

About this article

Cite this article as:

Jimenez C. Elsie *, D-Amino Acids in Peptides from Animals, Including Human: Occurrence, Structure, Bioactivity and Pharmacology, Current Protein & Peptide Science 2020; 21 (6) .https://dx.doi.org/10.2174/1389203721666200426233758

DOI
https://dx.doi.org/10.2174/1389203721666200426233758
Print ISSN
1389-2037
Publisher Name
Bentham Science Publisher
Online ISSN
1875-5550

Call for Papers in Thematic Issues

31 December, 2025
Advancements in Proteomic and Peptidomic Approaches in Cancer Immunotherapy: Unveiling the Immune Microenvironment

The scope of this thematic issue centers on the integration of proteomic and peptidomic technologies into the field of cancer immunotherapy, with a particular emphasis on exploring the tumor immune microenvironment. This issue aims to gather contributions that illustrate the application of these advanced methodologies in unveiling the complex interplay ...read more


Guest Editor(s):Dr. Hao Chi
31 December, 2025
Artificial Intelligence for Protein Research

Protein research, essential for understanding biological processes and creating therapeutics, faces challenges due to the intricate nature of protein structures and functions. Traditional methods are limited in exploring the vast protein sequence space efficiently. Artificial intelligence (AI) and machine learning (ML) offer promising solutions by improving predictions and speeding up ...read more


Guest Editor(s):Dr. Xiu-An Yang
15 January, 2026
Biomarkers in Diagnostics and Therapeutics: Advancements in Proteins and Peptides Across Preclinical and Clinical Studies

Biomarkers play a crucial role in the understanding and management of diseases, enabling clinicians and researchers to diagnose conditions earlier, predict disease outcomes, and develop personalized treatment strategies. Proteins and peptides, as key molecular entities, hold substantial promise in revolutionizing biomarker discovery, especially in the context of complex diseases such ...read more


Guest Editor(s):Dr. Ghulam Murtaza
31 December, 2025
Nutrition and Metabolism in Musculoskeletal Diseases

The musculoskeletal system consists mainly of cartilage, bone, muscles, tendons, connective tissue and ligaments. Balanced metabolism is of vital importance for the homeostasis of the musculoskeletal system. A series of musculoskeletal diseases (for example, sarcopenia, osteoporosis) are resulted from the dysregulated metabolism of the musculoskeletal system. Furthermore, metabolic diseases (such ...read more


Guest Editor(s):Dr. Lingfeng Zeng
Related Journals

Current Bioactive Compounds

Current Diabetes Reviews

Current Enzyme Inhibition

Current Molecular Medicine

Current Genomics

Current Medicinal Chemistry

Current Gene Therapy

Current Topics in Medicinal Chemistry

Current Signal Transduction Therapy

Medicinal Chemistry

Related Books

Plant-Microbe Interactions: A Comprehensive Review

Glycosylation and Glycation in Health and Diseases

Phytogenic and Phytochemical as Alternative Feed Additives for Animal Production

Methods and Techniques in Nematology

Mind Maps in Clinical Biochemistry

A Treatise on Ecological Science

From SARS-CoV to MARS-CoV

Microbiology for ICAR NET: A Comprehensive Exam Preparation Guide

Decolorization by Thanatephorus Cucumeris Dec 1

Industrial Applications of Soil Microbes

Article Metrics
63
Wayfinder Image
TIMBC 2025
Related Articles
© 2025 Bentham Science Publishers |Privacy Policy

[8]ページ先頭

©2009-2025 Movatter.jp