Class | Date | Topic/notes | Readings | Assignments, etc. |
---|
0 | Jan 21 | Introduction and Overview [ppt|pdf]
 | Szeliski 1 | |
1 | 23 | No class | | |
2 | 26 | Image filtering [ppt|pdf]
 | Szeliski 3.1, 3.2 | |
3 | 28 | Image filtering [ppt|pdf]
 | Szeliski 3.1, 3.2 | |
4 | 30 | Edge detection and Image Resampling [ppt|pdf]
 | Szeliski 4.2 | |
5 | Feb 2 | Image Resampling and PA 1 (Intelligent Scissors) [ppt|pdf]
 | Szeliski 2.3.1 and 3.5 | PA1 out |
6 | 4 | Image Interpolation [ppt|pdf]
 | Szeliski 2.3.1 and 3.5 | |
7 | 6 | Feature detection [ppt|pdf]
 | Szeliski 4.1 | |
8 | 9 | Harris corner detection [ppt|pdf]
 | Szeliski 4.1 | HW1 out |
9 | 11 | Invariance, blob detection, and MOPS [ppt|pdf]
 | Szeliski 4.1 | |
10 | 13 | Feature descriptors [ppt|pdf]
 | Szeliski 4.1 | PA1 due 2/12 (9:00am) |
Feb 16 | Winter Break |
11 | 18 | Feature matching and transformations [ppt|pdf]
 | Szeliski 6.1 | |
12 | 20 | Image transformations [ppt|pdf]
 | Szeliski 3.2 | |
13 | 23 | Image alignment and PA 2 [ppt|pdf]
 | Szeliski A.2, 6.1 | PA2 out |
14 | 25 | RANSAC and Hough Transforms [ppt|pdf]
 | Szeliski 6.1 | |
15 | 27 | Mid-term review | | HW1 due 2/26 |
16 | Mar 2 | Cameras [ppt|pdf]
 | Szeliski 2.1.3-2.1.6 | |
17 | 4 | Projection I [ppt|pdf]
 | Szeliski 2.1.3-2.1.6 | |
18 | 6 | Post-Prelim | | |
Mar 5 (Thu) | Prelim:7:30 pm, Location: Call Auditorium, Kennedy Hall |
19 | 9 | Projection II [ppt|pdf]
 | Szeliski 9 | PA2 due |
20 | 11 | Panoramas [ppt|pdf]
 | Szeliski 9 | PA3 out |
21 | 13 | Single-view modeling I [ppt|pdf]
 | Szeliski 9 | |
22 | 16 | Single-view modeling II [ppt|pdf]
 | Szeliski 9 | |
23 | 18 | Two-view stereo I [ppt|pdf]
 | Szeliski 7.2 | |
24 | 20 | Two-view stereo II [ppt|pdf]
 | Szeliski 7.2 | |
25 | 23 | Two-view stereo III [ppt|pdf]
 | Szeliski 7.1-7.4 | |
26 | 25 | Photometric stereo [ppt|pdf]
 | Szeliski 12.1.1 | PA3 due |
27 | 27 | Dragon Day (No class. Support the Dragon!) | | |
Mar 30 | Spring Break |
Apr 1 | Spring Break |
Apr 3 | Spring Break |
28 | 6 | Multi-view stereo [ppt|pdf]
 | Szeliski 11.6 | HW2 out |
29 | 8 | Structure from Motion [ppt|pdf]
 | Szeliski 7.1-7.4 | PA4 out |
30 | 10 | Intro to Recognition [ppt|pdf]
 | Szeliski 14 | |
31 | 13 | Recognition Basics [ppt|pdf]
 | Karpathy Notes:classification | |
32 | 15 | Recognition Basics 2 [ppt|pdf]
 | Karpathy Notes:linear classification | |
33 | 17 | Backprop [ppt|pdf]
 | Karpathy Notes:optimization,optimization 2 | |
34 | 20 | CNNs 1 [pdf]
 | Karpathy Notes:Neural Nets 1,2 | |
35 | 22 | CNNs 2 [pdf]
 | Karpathy Notes:Neural Nets 3,CNNs | PA4 due,PA5 out |
36 | 24 | CNNs 3 [pdf]
 | Karpathy Notes:CNNs | |
37 | 27 | Charter Day (no class) | | |
38 | 29 | CNNs 4 (slides posted together with previous lecture) | | HW2 due |
39 | May 1 | Large-scale Datasets [pdf]
 | | |
40 | 4 | Recognition Wrapup [pdf]
 | | PA5 due |
41 | 6 | Conclusions | | |
May 14 | Final Exam: 9am, OLH155: Olin Hall 155 |