| Acronym | tet | |||||||||||||||||||
| TOCID symbol | T, (2)Q | |||||||||||||||||||
| Name | tetrahedron, 3Dsimplex (α3), pyrochor(id), regular trigonal pyramid, digonal antiprism, regular (di)sphenoid, hemicube, smaller Delone cell of face-centered cubic (fcc)lattice, regular line-scalene, regular (point-)tettene, vertex figure ofpen, Gosset polytope 02, Waterman polyhedron number 1 wrt. face-centered cubiclattice A3 centered at a shallow hole | |||||||||||||||||||
| |,>,O device | line pyramid pyramid =|>> | |||||||||||||||||||
| VRML |
| |||||||||||||||||||
| Circumradius | sqrt(3/8) = 0.612372 | |||||||||||||||||||
| Edge radius | 1/sqrt(8) = 0.353553 | |||||||||||||||||||
| Inradius | 1/sqrt(24) = 0.204124 | |||||||||||||||||||
| Vertex figure | [33] = x3o | |||||||||||||||||||
| Snub derivation / VRML |
| |||||||||||||||||||
| Vertex layers |
| |||||||||||||||||||
| Lace city in approx. ASCII-art | o x o | |||||||||||||||||||
| Coordinates | (1/sqrt(8), 1/sqrt(8), 1/sqrt(8)) & all permutations, all even changes of sign | |||||||||||||||||||
| Volume | sqrt(2)/12 = 0.117851 | |||||||||||||||||||
| Surface | sqrt(3) = 1.732051 | |||||||||||||||||||
| Rel. Roundness | π sqrt(3)/18 = 30.229989 % | |||||||||||||||||||
| General of army | (is itself convex) | |||||||||||||||||||
| Colonel of regiment | (is itself locally convex – no other uniform polyhedral members) | |||||||||||||||||||
| Dual | (selfdual, in different orientation) | |||||||||||||||||||
| Dihedral angles |
| |||||||||||||||||||
| Face vector | 4, 6, 4 | |||||||||||||||||||
| Confer |
| |||||||||||||||||||
| External links | | |||||||||||||||||||
The number of ways to color the tetrahedron with different colors per face is 4!/12 = 2. – This is because the color group is the permutation group of 4 elements and has size 4!,while the order of the pure rotational tetrahedral group is 12. (The reflectional tetrahedral group would have twice as many, i.e. 24 elements.)
3D simplices with 3 alike faces aretrigonal pyramids (which thus is describable byox3oo&#y). Those with 2 alike faces aresphenoids. Those with 2 pairs of alike faces then aredisphenoids.The (regular) tetrahedron hence is just a special case of all these. More specially some authors even want to distinguish the various types of those disphenoids by means of additional attributions:atetragonal disphenoid will have four identicalisosceles triangles (which thus is describable byxo ox&#y or as digonalantiprism of arbitrary height), adigonal disphenoid has two types of isosceles triangles (which thus isxo oy&#z), arhombic disphenoid has four identicalscalene triangles, and aphyllic disphenoid has two types of scalene triangles, i.e. the latter two just are chiral versions of the formers.
Somehow off-topic there are some neet number relations between the tet and theoct:
Incidence matrix according toDynkin symbol
x3o3o. . . | 4 | 3 | 3------+---+---+--x . . | 2 | 6 | 2------+---+---+--x3o . | 3 | 3 | 4snubbed forms:β3o3o
x3o3/2o. . . | 4 | 3 | 3--------+---+---+--x . . | 2 | 6 | 2--------+---+---+--x3o . | 3 | 3 | 4snubbed forms:β3o3/2o
x3/2o3o. . . | 4 | 3 | 3--------+---+---+--x . . | 2 | 6 | 2--------+---+---+--x3/2o . | 3 | 3 | 4snubbed forms:β3/2o3o
x3/2o3/2o. . . | 4 | 3 | 3----------+---+---+--x . . | 2 | 6 | 2----------+---+---+--x3/2o . | 3 | 3 | 4snubbed forms:β3/2o3/2o
s4o3odemi( . . . ) |4 | 3 | 3--------------+---+---+-- s4o .♦ 2 | 6 | 2--------------+---+---+--sefa( s4o3o ) | 3 | 3 | 4starting figure:x4o3o
s2s4odemi( . . . ) |4 | 2 1 | 3--------------+---+-----+-- s2s .♦ 2 | 4 * | 2 . s4o♦ 2 | * 2 | 2--------------+---+-----+--sefa( s2s4o ) | 3 | 2 1 | 4starting figure:x x4o
s2s2sdemi( . . . ) |4 | 1 1 1 | 3--------------+---+-------+-- s2s .♦ 2 | 2 * * | 2 s 2 s♦ 2 | * 2 * | 2 . s2s♦ 2 | * * 2 | 2--------------+---+-------+--sefa( s2s2s ) | 3 | 1 1 1 | 4starting figure:x x x
xo3oo&#x → height = sqrt(2/3) = 0.816497({3}|| pt)o.3o. | 3 * | 2 1 | 1 2.o3.o | *1 | 0 3 | 0 3---------+-----+-----+----x. .. | 2 0 | 3 * | 1 1oo3oo&#x | 1 1 | * 3 | 0 2---------+-----+-----+----x.3o. | 3 0 | 3 0 |1 *xo ..&#x | 2 1 | 1 2 | * 3xo ox&#x → height = 1/sqrt(2) = 0.707107(line|| perp line)o. o. | 2 * | 1 2 0 | 2 1.o .o | * 2 | 0 2 1 | 1 2---------+-----+-------+----x. .. | 2 0 |1 * * | 2 0oo oo&#x | 1 1 | * 4 * | 1 1.. .x | 0 2 | * *1 | 0 2---------+-----+-------+----xo ..&#x | 2 1 | 1 2 0 | 2 *.. ox&#x | 1 2 | 0 2 1 | * 2oxo&#x → height(1,2) = height(2,3) = sqrt(3)/2 = 0.866025 height(1,3) = 1( (pt|| line)|| pt)o.. |1 * * | 2 1 0 0 | 1 2 0.o. | * 2 * | 1 0 1 1 | 1 1 1..o | * *1 | 0 1 0 2 | 0 2 1-------+-------+---------+------oo.&#x | 1 1 0 | 2 * * * | 1 1 0o.o&#x | 1 0 1 | * 1 * * | 0 2 0.x. | 0 2 0 | * *1 * | 1 0 1.oo&#x | 0 1 1 | * * * 2 | 0 1 1-------+-------+---------+------ox.&#x | 1 2 0 | 2 0 1 0 | 1 * *ooo&#x | 1 1 1 | 1 1 0 1 | * 2 *.xo&#x | 0 2 1 | 0 0 1 2 | * * 1
oooo&#x → all pairwise heights = 1o... |1 * * * | 1 1 1 0 0 0 | 1 1 1 0.o.. | *1 * * | 1 0 0 1 1 0 | 1 1 0 1..o. | * *1 * | 0 1 0 1 0 1 | 1 0 1 1...o | * * *1 | 0 0 1 0 1 1 | 0 1 1 1--------+---------+-------------+--------oo..&#x | 1 1 0 0 | 1 * * * * * | 1 1 0 0o.o.&#x | 1 0 1 0 | * 1 * * * * | 1 0 1 0o..o&#x | 1 0 0 1 | * * 1 * * * | 0 1 1 0.oo.&#x | 0 1 1 0 | * * * 1 * * | 1 0 0 1.o.o&#x | 0 1 0 1 | * * * * 1 * | 0 1 0 1..oo&#x | 0 0 1 1 | * * * * * 1 | 0 0 1 1--------+---------+-------------+--------ooo.&#x | 1 1 1 0 | 1 1 0 1 0 0 | 1 * * *oo.o&#x | 1 1 0 1 | 1 0 1 0 1 0 | * 1 * *o.oo&#x | 1 0 1 1 | 0 1 1 0 0 1 | * * 1 *.ooo&#x | 0 1 1 1 | 0 0 0 1 1 1 | * * * 1
© 2004-2025 | top of page |