| Acronym | oct (alt.: trap, tatet) | |||||||||||||||||||||||||||||||||||||||||
| TOCID symbol | O,TT, (3)Q | |||||||||||||||||||||||||||||||||||||||||
| Name | octahedron, rectifiedtetrahedron, tricross (β3), tetratetrahedron, aerochor(id), trigonalantiprism, snubbed triangular dihedron, larger Delone cell of face-centered cubic (fcc)lattice, equatorial cross-section of (vertex first) 1/q-tes, vertex figure ofhex, Gosset polytope 01,1, lattice C3 contact polytope (span of its small roots), equatorial cross-section of vertex-firsthex | |||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||
| VRML |
| |||||||||||||||||||||||||||||||||||||||||
| Circumradius | 1/sqrt(2) = 0.707107 | |||||||||||||||||||||||||||||||||||||||||
| Edge radius | 1/2 | |||||||||||||||||||||||||||||||||||||||||
| Inradius | 1/sqrt(6) = 0.408248 | |||||||||||||||||||||||||||||||||||||||||
| Vertex figure | [34] = x4o | |||||||||||||||||||||||||||||||||||||||||
| Snub derivation / VRML |
| |||||||||||||||||||||||||||||||||||||||||
| Vertex layers |
| |||||||||||||||||||||||||||||||||||||||||
| Lace city in approx. ASCII-art |
| |||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||
| Lace hyper city in approx. ASCII-art |
| |||||||||||||||||||||||||||||||||||||||||
| Coordinates | (1/sqrt(2), 0, 0) & all permutations, all changes of sign | |||||||||||||||||||||||||||||||||||||||||
| Volume | sqrt(2)/3 = 0.471405 | |||||||||||||||||||||||||||||||||||||||||
| Surface | 2 sqrt(3) = 3.464102 | |||||||||||||||||||||||||||||||||||||||||
| Rel. Roundness | π sqrt(3)/9 = 60.459979 % | |||||||||||||||||||||||||||||||||||||||||
| General of army | (is itself convex) | |||||||||||||||||||||||||||||||||||||||||
| Colonel of regiment | (is itself locally convex – other uniform polyhedral member:thah– otheredge facetings) | |||||||||||||||||||||||||||||||||||||||||
| Dual | cube | |||||||||||||||||||||||||||||||||||||||||
| Dihedral angles |
| |||||||||||||||||||||||||||||||||||||||||
| Face vector | 6, 12, 8 | |||||||||||||||||||||||||||||||||||||||||
| Confer |
| |||||||||||||||||||||||||||||||||||||||||
| External links | | |||||||||||||||||||||||||||||||||||||||||
The number of ways to color the octahedron with different colors per face is 8!/24 = 1 680. – This is because the color group is the permutation group of 8 elements and has size 8!,while the order of the pure rotational octahedral group is 24. (The reflectional octahedral group would have twice as many, i.e. 48 elements.)
When considered as a trigonal antiprisms s3s (and scaled byh = sqrt(3)), then the prismaticcompound with its mirrored copy will have for hull metrically exact thehip-variantq x3x. Stated the other way round, the merealternating faceting of thatvariant results in this (scaled) regular shape.
The acronymoct is being used for the full symmetrical (octahedral) variant,trap refers to the trigonal antiprismatic subsymmetry,andtatet refers to the tetratetrahedron, i.e. its tetrahedral subsymmetry.
Being the dual ofcube and considering that one's coordinates, it is apparent that this solid is nothing but a ball wrt.the norm |x|+|y|+|z|.
Somehow off-topic there are some neet number relations between the oct and thetet:
Incidence matrix according toDynkin symbol
x3o4o. . . | 6 | 4 | 4------+---+----+--x . . | 2 | 12 | 2------+---+----+--x3o . | 3 | 3 | 8snubbed forms:β3o4o
x3/2o4o. . . | 6 | 4 | 4--------+---+----+--x . . | 2 | 12 | 2--------+---+----+--x3/2o . | 3 | 3 | 8snubbed forms:β3/2o4o
o4/3o3x. . . | 6 | 4 | 4--------+---+----+--. . x | 2 | 12 | 2--------+---+----+--. o3x | 3 | 3 | 8snubbed forms:o4/3o3β
o4/3o3/2x. . . | 6 | 4 | 4----------+---+----+--. . x | 2 | 12 | 2----------+---+----+--. o3/2x | 3 | 3 | 8snubbed forms:o4/3o3/2β
o3x3o. . . | 6 | 4 | 2 2------+---+----+----. x . | 2 | 12 | 1 1------+---+----+----o3x . | 3 | 3 | 4 *. x3o | 3 | 3 | * 4snubbed forms:o3β3o
o3/2x3o. . . | 6 | 4 | 2 2--------+---+----+----. x . | 2 | 12 | 1 1--------+---+----+----o3/2x . | 3 | 3 | 4 *. x3o | 3 | 3 | * 4snubbed forms:o3/2β3o
o3/2x3/2o. . . | 6 | 4 | 2 2----------+---+----+----. x . | 2 | 12 | 1 1----------+---+----+----o3/2x . | 3 | 3 | 4 *. x3/2o | 3 | 3 | * 4snubbed forms:o3/2β3/2o
s2s3sdemi( . . . ) |6 | 1 1 2 | 1 3---------------+---+-------+---- s2s . | 2 | 3 * * | 0 2 s . s2*a | 2 | * 3 * | 0 2sefa( . s3s ) | 2 | * * 6 | 1 1---------------+---+-------+---- . s3s♦ 3 | 0 0 3 | 2 *sefa( s2s3s ) | 3 | 1 1 1 | * 6
ordemi( . . . ) |6 | 2 2 | 1 3-------------------------+---+-----+---- s2s . & s . s2*a | 2 | 6 * | 0 2sefa( . s3s ) | 2 | * 6 | 1 1-------------------------+---+-----+---- . s3s♦ 3 | 0 3 | 2 *sefa( s2s3s ) | 3 | 2 1 | * 6starting figure:x x3x
s2s6odemi( . . . ) |6 | 2 2 | 1 3--------------+---+-----+---- s2s . | 2 | 6 * | 0 2sefa( . s6o ) | 2 | * 6 | 1 1--------------+---+-----+---- . s6o♦ 3 | 0 3 | 2 *sefa( s2s6o ) | 3 | 2 1 | * 6starting figure:x x6o
xo3ox&#x → height = sqrt(2/3) = 0.816497({3}|| dual {3})o.3o. | 3 * | 2 2 0 | 1 2 1 0.o3.o | * 3 | 0 2 2 | 0 1 2 1---------+-----+-------+--------x. .. | 2 0 | 3 * * | 1 1 0 0oo3oo&#x | 1 1 | * 6 * | 0 1 1 0.. .x | 0 2 | * * 3 | 0 0 1 1---------+-----+-------+--------x.3o. | 3 0 | 3 0 0 |1 * * *xo ..&#x | 2 1 | 1 2 0 | * 3 * *.. ox&#x | 1 2 | 0 2 1 | * * 3 *.o3.x | 0 3 | 0 0 3 | * * *1oxo4ooo&#xt → both heights = 1/sqrt(2) = 0.707107(pt|| pseudo {4}|| pt)o..4o.. |1 * * | 4 0 0 | 4 0.o.4.o. | * 4 * | 1 2 1 | 2 2..o4..o | * *1 | 0 0 4 | 0 4-----------+-------+-------+----oo.4oo.&#x | 1 1 0 | 4 * * | 2 0.x. ... | 0 2 0 | * 4 * | 1 1.oo4.oo&#x | 0 1 1 | * * 4 | 0 2-----------+-------+-------+----ox. ...&#x | 1 2 0 | 2 1 0 | 4 *.xo ...&#x | 0 2 1 | 0 1 2 | * 4
oro..4o.. & |2 * | 4 0 | 4.o.4.o. | * 4 | 2 2 | 4-------------+-----+-----+--oo.4oo.&#x & | 1 1 | 8 * | 2.x. ... | 0 2 | * 4 | 2-------------+-----+-----+--ox. ...&#x & | 1 2 | 2 1 | 8
oxo oxo&#xt → both heights = 1/sqrt(2) = 0.707107(pt|| pseudo {4}|| pt)o.. o.. |1 * * | 4 0 0 0 | 2 2 0 0.o. .o. | * 4 * | 1 1 1 1 | 1 1 1 1..o ..o | * *1 | 0 0 0 4 | 0 0 2 2-----------+-------+---------+--------oo. oo.&#x | 1 1 0 | 4 * * * | 1 1 0 0.x. ... | 0 2 0 | * 2 * * | 1 0 1 0... .x. | 0 2 0 | * * 2 * | 0 1 0 1.oo .oo&#x | 0 1 1 | * * * 4 | 0 0 1 1-----------+-------+---------+--------ox. ...&#x | 1 2 0 | 2 1 0 0 | 2 * * *... ox.&#x | 1 2 0 | 2 0 1 0 | * 2 * *.xo ...&#x | 0 2 1 | 0 1 0 2 | * * 2 *... .xo&#x | 0 2 1 | 0 0 1 2 | * * * 2
oro.. o.. & |2 * | 4 0 0 | 2 2.o. .o. | * 4 | 2 1 1 | 2 2-------------+-----+-------+----oo. oo.&#x & | 1 1 | 8 * * | 1 1.x. ... | 0 2 | * 2 * | 2 0... .x. | 0 2 | * * 2 | 0 2-------------+-----+-------+----ox. ...&#x & | 1 2 | 2 1 0 | 4 *... ox.&#x & | 1 2 | 2 0 1 | * 4
xox oqo&#xt → both heights = 1/2(line|| perp pseudo q-line|| line)o.. o.. | 2 * * | 1 2 1 0 0 | 2 2 0.o. .o. | * 2 * | 0 2 0 2 0 | 1 2 1..o ..o | * * 2 | 0 0 1 2 1 | 0 2 2------------+-------+-----------+------x.. ... | 2 0 0 |1 * * * * | 2 0 0oo. oo.&#x | 1 1 0 | * 4 * * * | 1 1 0o.o o.o&#x | 1 0 1 | * * 2 * * | 0 2 0.oo .oo&#x | 0 1 1 | * * * 4 * | 0 1 1..x ... | 0 0 2 | * * * *1 | 0 0 2------------+-------+-----------+------xo. ...&#x | 2 1 0 | 1 2 0 0 0 | 2 * *ooo ooo&#xt | 1 1 1 | 0 1 1 1 0 | * 4 *.ox ...&#x | 0 1 2 | 0 0 0 2 1 | * * 2
oro.. o.. & | 4 * | 1 2 1 | 2 2.o. .o. | * 2 | 0 4 0 | 2 2--------------+-----+-------+----x.. ... & | 2 0 |2 * * | 2 0oo. oo.&#x & | 1 1 | * 8 * | 1 1o.o o.o&#x | 2 0 | * * 2 | 0 2--------------+-----+-------+----xo. ...&#x & | 2 1 | 1 2 0 | 4 *ooo ooo&#xt | 2 1 | 0 2 1 | * 4
oxox&#xr → all cyclical heights = sqrt(3)/2 = 0.866025 in fact this lace simplex degenerates into a rhomb with diagonals: height(1,3) = sqrt(2) = 1.414214 height(2,4) = 1o... | 1 * * * | 2 2 0 0 0 0 0 | 1 2 1 0 0 0.o.. | * 2 * * | 1 0 1 1 1 0 0 | 1 1 0 1 1 0..o. | * * 1 * | 0 0 0 2 0 2 0 | 0 0 0 1 2 1...o | * * * 2 | 0 1 0 0 1 1 1 | 0 1 1 0 1 1--------+---------+---------------+------------oo..&#x | 1 1 0 0 | 2 * * * * * * | 1 1 0 0 0 0o..o&#x | 1 0 0 1 | * 2 * * * * * | 0 1 1 0 0 0.x.. | 0 2 0 0 | * * 1 * * * * | 1 0 0 1 0 0.oo.&#x | 0 1 1 0 | * * * 2 * * * | 0 0 0 1 1 0.o.o&#x | 0 1 0 1 | * * * * 2 * * | 0 1 0 0 1 0..oo&#x | 0 0 1 1 | * * * * * 2 * | 0 0 0 0 1 1...x | 0 0 0 2 | * * * * * * 1 | 0 0 1 0 0 1--------+---------+---------------+------------ox..&#x | 1 2 0 0 | 2 0 1 0 0 0 0 | 1 * * * * *oo.o&#x | 1 1 0 1 | 1 1 0 0 1 0 0 | * 2 * * * *o..x&#x | 1 0 0 2 | 0 2 0 0 0 0 1 | * * 1 * * *.xo.&#x | 0 2 1 0 | 0 0 1 2 0 0 0 | * * * 1 * *.ooo&#x | 0 1 1 1 | 0 0 0 1 1 1 0 | * * * * 2 *..ox&#x | 0 0 1 2 | 0 0 0 0 0 2 1 | * * * * * 1
qo ox4oo&#zx → height = 0(tegum sum of q-line and perp {4})(tegum product of q-line with {4})o. o.4o. | 2 * | 4 0 | 4.o .o4.o | * 4 | 2 2 | 4------------+-----+-----+--oo oo4oo&#x | 1 1 | 8 * | 2.. .x .. | 0 2 | * 4 | 2------------+-----+-----+--.. ox ..&#x | 1 2 | 2 1 | 8qo ox ox&#zx → height = 0(tegum sum of q-line and perp {4})(tegum product of q-line with {4})o. o. o. | 2 * | 4 0 0 | 2 2.o .o .o | * 4 | 2 1 1 | 2 2------------+-----+-------+----oo oo oo&#x | 1 1 | 8 * * | 1 1.. .x .. | 0 2 | * 2 * | 2 0.. .. .x | 0 2 | * * 2 | 0 2------------+-----+-------+----.. ox ..&#x | 1 2 | 2 1 0 | 4 *.. .. ox&#x | 1 2 | 2 0 1 | * 4qoo oqo ooq&#zx → all heights = 0(tegum sum of 3 perp q-lines)(tegum product of 3 q-lines)o.. o.. o.. | 2 * * | 2 2 0 | 4.o. .o. .o. | * 2 * | 2 0 2 | 4..o ..o ..o | * * 2 | 0 2 2 | 4---------------+-------+-------+--oo. oo. oo.&#x | 1 1 0 | 4 * * | 2o.o o.o o.o&#x | 1 0 1 | * 4 * | 2.oo .oo .oo&#x | 0 1 1 | * * 4 | 2---------------+-------+-------+--ooo ooo ooo&#x | 1 1 1 | 1 1 1 | 8
oooooo&#xr → all consecutive pairwise heights = all alternating pairwise heights = 1 Note: these lengths show that this cycle isnot flat, rather it is wobbling up and down!o..... & | 6 | 2 2 | 3 1-------------+---+-----+----oo....&#x & | 2 | 6 * | 2 0o.o...&#x & | 2 | * 6 | 1 1-------------+---+-----+----ooo...&#x & | 3 | 2 1 | 6 *o.o.o.&#x & | 3 | 0 3 | * 2
oxxo&#xt → height(1,2) = height(3,4) = 1/sqrt(12) = 0.288675 height(2,3) = 1/sqrt(3) = 0.577350 Note: these lengths show that this tower isnot flat, rather it has additional leporello folds!o... & |2 * | 2 2 0 0 | 1 1 2.o.. & | * 4 | 1 1 1 1 | 1 1 2-----------+-----+---------+------oo..&#x & | 1 1 | 4 * * * | 1 0 1o.o.&#x & | 1 1 | * 4 * * | 0 1 1.x.. & | 0 2 | * * 2 * | 1 1 0.oo.&#x | 0 2 | * * * 2 | 0 0 2-----------+-----+---------+------ox..&#x & | 1 2 | 2 0 1 0 | 2 * *o.x.&#x & | 1 2 | 0 2 1 0 | * 2 *ooo.&#x & | 1 2 | 1 1 0 1 | * * 4
© 2004-2025 | top of page |