Movatterモバイル変換


[0]ホーム

URL:


Acronymoct (alt.: trap, tatet)
TOCID symbolO,TT, (3)Q
Nameoctahedron,
rectifiedtetrahedron,
tricross3),
tetratetrahedron,
aerochor(id),
trigonalantiprism,
snubbed triangular dihedron,
larger Delone cell of face-centered cubic (fcc)lattice,
equatorial cross-section of (vertex first) 1/q-tes,
vertex figure ofhex,
Gosset polytope 01,1,
lattice C3 contact polytope (span of its small roots),
equatorial cross-section of vertex-firsthex
 
©
VRML
©
Circumradius1/sqrt(2) = 0.707107
Edge radius1/2
Inradius1/sqrt(6) = 0.408248
Vertex figure[34] = x4o
Snub derivation /
VRML
Vertex layers
LayerSymmetrySubsymmetries
 o3o4oo3o .o . o. o4o
1x3o4ox3o .
{3} first
x . o
edge first
. o4o
vertex first
2o3x .
opposite {3}
o . q. x4o
vertex figure
3 x . o
opposite edge
. o4o
opposite vertex
 o3o3oo3o .o . o. o3o
1o3x3oo3x .
{3} first
o . o
vertex first
. x3o
{3} first
2x3o .
opposite {3}
x . x
vertex figure
. o3x
opposite {3}
3 o . o
opposite vertex
 
Lace city
in approx. ASCII-art
©
 x oo x
©
  o  o q o  o
Lace hyper city
in approx. ASCII-art
©
    o                     o       o
         o       o                     o
Coordinates(1/sqrt(2), 0, 0)   & all permutations, all changes of sign
Volumesqrt(2)/3 = 0.471405
Surface2 sqrt(3) = 3.464102
Rel. Roundnessπ sqrt(3)/9 = 60.459979 %
General of army(is itself convex)
Colonel of regiment(is itself locally convex – other uniform polyhedral member:thah– otheredge facetings)
Dualcube
Dihedral angles
  • between {3} and {3}:   arccos(-1/3) = 109.471221°
Face vector6, 12, 8
Confer
more general:
xPo3o...o3o4o  
general antiprisms:
n-ap  n/2-ap  n/d-ap  
special bipyramids:
m mNo  
variations:
qo3oq&#x  xo3ox&#q  xo3ox&#h  ho3oh&#q  squit  
Grünbaumian relatives:
oct+6{4}  2oct  2oct+6{4}  2oct+8{3}  2oct+12{4}  4oct  
uniform relative:
thah  
relatedJohnson solids:
squippy  
relatedscaliform:
bobipyr  
compounds:
se  sno  daso  dissit  si  gissi  addasi  dasi  oct+4gyro3py  
ambification:
co  
ambification pre-image:
tet  
complex polytopes:
Shephard's generalized oct  
general polytopal classes:
Wythoffian polyhedra  Catalan polyhedra  deltahedra  regular  noble polytopes  orthoplex  partial Stott expansions  segmentohedra  fundamental lace prisms  bistratic lace towers  lace simplices  Coxeter-Elte-Gosset polytopes  Hanner polytopes  
analogs:
rectified simplex rSn  mid-rectified simplex mrSn  regular orthoplex On  birectified hypercube brCn  
External
links
hedrondude  wikipedia  polytopewiki  WikiChoron  mathworld  Polyedergarten  quickfur

The number of ways to color the octahedron with different colors per face is 8!/24 = 1 680. – This is because the color group is the permutation group of 8 elements and has size 8!,while the order of the pure rotational octahedral group is 24. (The reflectional octahedral group would have twice as many, i.e. 48 elements.)

When considered as a trigonal antiprisms s3s (and scaled byh = sqrt(3)), then the prismaticcompound with its mirrored copy will have for hull metrically exact thehip-variantq x3x. Stated the other way round, the merealternating faceting of thatvariant results in this (scaled) regular shape.

The acronymoct is being used for the full symmetrical (octahedral) variant,trap refers to the trigonal antiprismatic subsymmetry,andtatet refers to the tetratetrahedron, i.e. its tetrahedral subsymmetry.

Being the dual ofcube and considering that one's coordinates, it is apparent that this solid is nothing but a ball wrt.the norm |x|+|y|+|z|.

Somehow off-topic there are some neet number relations between the oct and thetet:


Incidence matrix according toDynkin symbol

x3o4o. . . | 6 |  4 | 4------+---+----+--x . . | 2 | 12 | 2------+---+----+--x3o . | 3 |  3 | 8snubbed forms:β3o4o

x3/2o4o.   . . | 6 |  4 | 4--------+---+----+--x   . . | 2 | 12 | 2--------+---+----+--x3/2o . | 3 |  3 | 8snubbed forms:β3/2o4o

o4/3o3x.   . . | 6 |  4 | 4--------+---+----+--.   . x | 2 | 12 | 2--------+---+----+--.   o3x | 3 |  3 | 8snubbed forms:o4/3o3β

o4/3o3/2x.   .   . | 6 |  4 | 4----------+---+----+--.   .   x | 2 | 12 | 2----------+---+----+--.   o3/2x | 3 |  3 | 8snubbed forms:o4/3o3/2β

o3x3o. . . | 6 |  4 | 2 2------+---+----+----. x . | 2 | 12 | 1 1------+---+----+----o3x . | 3 |  3 | 4 *. x3o | 3 |  3 | * 4snubbed forms:o3β3o

o3/2x3o.   . . | 6 |  4 | 2 2--------+---+----+----.   x . | 2 | 12 | 1 1--------+---+----+----o3/2x . | 3 |  3 | 4 *.   x3o | 3 |  3 | * 4snubbed forms:o3/2β3o

o3/2x3/2o.   .   . | 6 |  4 | 2 2----------+---+----+----.   x   . | 2 | 12 | 1 1----------+---+----+----o3/2x   . | 3 |  3 | 4 *.   x3/2o | 3 |  3 | * 4snubbed forms:o3/2β3/2o

s2s3sdemi( . . .  ) |6 | 1 1 2 | 1 3---------------+---+-------+----      s2s .    | 2 | 3 * * | 0 2      s . s2*a | 2 | * 3 * | 0 2sefa( . s3s  ) | 2 | * * 6 | 1 1---------------+---+-------+----      . s3s 3 | 0 0 3 | 2 *sefa( s2s3s  ) | 3 | 1 1 1 | * 6
ordemi( . . . )            |6 | 2 2 | 1 3-------------------------+---+-----+----      s2s .  &  s . s2*a | 2 | 6 * | 0 2sefa( . s3s )            | 2 | * 6 | 1 1-------------------------+---+-----+----      . s3s 3 | 0 3 | 2 *sefa( s2s3s )            | 3 | 2 1 | * 6starting figure:x x3x

s2s6odemi( . . . ) |6 | 2 2 | 1 3--------------+---+-----+----      s2s .   | 2 | 6 * | 0 2sefa( . s6o ) | 2 | * 6 | 1 1--------------+---+-----+----      . s6o 3 | 0 3 | 2 *sefa( s2s6o ) | 3 | 2 1 | * 6starting figure:x x6o

xo3ox&#x   → height = sqrt(2/3) = 0.816497({3}|| dual {3})o.3o.    | 3 * | 2 2 0 | 1 2 1 0.o3.o    | * 3 | 0 2 2 | 0 1 2 1---------+-----+-------+--------x. ..    | 2 0 | 3 * * | 1 1 0 0oo3oo&#x | 1 1 | * 6 * | 0 1 1 0.. .x    | 0 2 | * * 3 | 0 0 1 1---------+-----+-------+--------x.3o.    | 3 0 | 3 0 0 |1 * * *xo ..&#x | 2 1 | 1 2 0 | * 3 * *.. ox&#x | 1 2 | 0 2 1 | * * 3 *.o3.x    | 0 3 | 0 0 3 | * * *1

oxo4ooo&#xt   → both heights = 1/sqrt(2) = 0.707107(pt|| pseudo {4}|| pt)o..4o..    |1 * * | 4 0 0 | 4 0.o.4.o.    | * 4 * | 1 2 1 | 2 2..o4..o    | * *1 | 0 0 4 | 0 4-----------+-------+-------+----oo.4oo.&#x | 1 1 0 | 4 * * | 2 0.x. ...    | 0 2 0 | * 4 * | 1 1.oo4.oo&#x | 0 1 1 | * * 4 | 0 2-----------+-------+-------+----ox. ...&#x | 1 2 0 | 2 1 0 | 4 *.xo ...&#x | 0 2 1 | 0 1 2 | * 4
oro..4o..    & |2 * | 4 0 | 4.o.4.o.      | * 4 | 2 2 | 4-------------+-----+-----+--oo.4oo.&#x & | 1 1 | 8 * | 2.x. ...      | 0 2 | * 4 | 2-------------+-----+-----+--ox. ...&#x & | 1 2 | 2 1 | 8

oxo oxo&#xt   → both heights = 1/sqrt(2) = 0.707107(pt|| pseudo {4}|| pt)o.. o..    |1 * * | 4 0 0 0 | 2 2 0 0.o. .o.    | * 4 * | 1 1 1 1 | 1 1 1 1..o ..o    | * *1 | 0 0 0 4 | 0 0 2 2-----------+-------+---------+--------oo. oo.&#x | 1 1 0 | 4 * * * | 1 1 0 0.x. ...    | 0 2 0 | * 2 * * | 1 0 1 0... .x.    | 0 2 0 | * * 2 * | 0 1 0 1.oo .oo&#x | 0 1 1 | * * * 4 | 0 0 1 1-----------+-------+---------+--------ox. ...&#x | 1 2 0 | 2 1 0 0 | 2 * * *... ox.&#x | 1 2 0 | 2 0 1 0 | * 2 * *.xo ...&#x | 0 2 1 | 0 1 0 2 | * * 2 *... .xo&#x | 0 2 1 | 0 0 1 2 | * * * 2
oro.. o..    & |2 * | 4 0 0 | 2 2.o. .o.      | * 4 | 2 1 1 | 2 2-------------+-----+-------+----oo. oo.&#x & | 1 1 | 8 * * | 1 1.x. ...      | 0 2 | * 2 * | 2 0... .x.      | 0 2 | * * 2 | 0 2-------------+-----+-------+----ox. ...&#x & | 1 2 | 2 1 0 | 4 *... ox.&#x & | 1 2 | 2 0 1 | * 4

xox oqo&#xt   → both heights = 1/2(line|| perp pseudo q-line|| line)o.. o..     | 2 * * | 1 2 1 0 0 | 2 2 0.o. .o.     | * 2 * | 0 2 0 2 0 | 1 2 1..o ..o     | * * 2 | 0 0 1 2 1 | 0 2 2------------+-------+-----------+------x.. ...     | 2 0 0 |1 * * * * | 2 0 0oo. oo.&#x  | 1 1 0 | * 4 * * * | 1 1 0o.o o.o&#x  | 1 0 1 | * * 2 * * | 0 2 0.oo .oo&#x  | 0 1 1 | * * * 4 * | 0 1 1..x ...     | 0 0 2 | * * * *1 | 0 0 2------------+-------+-----------+------xo. ...&#x  | 2 1 0 | 1 2 0 0 0 | 2 * *ooo ooo&#xt | 1 1 1 | 0 1 1 1 0 | * 4 *.ox ...&#x  | 0 1 2 | 0 0 0 2 1 | * * 2
oro.. o..     & | 4 * | 1 2 1 | 2 2.o. .o.       | * 2 | 0 4 0 | 2 2--------------+-----+-------+----x.. ...     & | 2 0 |2 * * | 2 0oo. oo.&#x  & | 1 1 | * 8 * | 1 1o.o o.o&#x    | 2 0 | * * 2 | 0 2--------------+-----+-------+----xo. ...&#x  & | 2 1 | 1 2 0 | 4 *ooo ooo&#xt   | 2 1 | 0 2 1 | * 4

oxox&#xr   → all cyclical heights = sqrt(3)/2 = 0.866025             in fact this lace simplex degenerates into a rhomb with diagonals:             height(1,3) = sqrt(2) = 1.414214             height(2,4) = 1o...    | 1 * * * | 2 2 0 0 0 0 0 | 1 2 1 0 0 0.o..    | * 2 * * | 1 0 1 1 1 0 0 | 1 1 0 1 1 0..o.    | * * 1 * | 0 0 0 2 0 2 0 | 0 0 0 1 2 1...o    | * * * 2 | 0 1 0 0 1 1 1 | 0 1 1 0 1 1--------+---------+---------------+------------oo..&#x | 1 1 0 0 | 2 * * * * * * | 1 1 0 0 0 0o..o&#x | 1 0 0 1 | * 2 * * * * * | 0 1 1 0 0 0.x..    | 0 2 0 0 | * * 1 * * * * | 1 0 0 1 0 0.oo.&#x | 0 1 1 0 | * * * 2 * * * | 0 0 0 1 1 0.o.o&#x | 0 1 0 1 | * * * * 2 * * | 0 1 0 0 1 0..oo&#x | 0 0 1 1 | * * * * * 2 * | 0 0 0 0 1 1...x    | 0 0 0 2 | * * * * * * 1 | 0 0 1 0 0 1--------+---------+---------------+------------ox..&#x | 1 2 0 0 | 2 0 1 0 0 0 0 | 1 * * * * *oo.o&#x | 1 1 0 1 | 1 1 0 0 1 0 0 | * 2 * * * *o..x&#x | 1 0 0 2 | 0 2 0 0 0 0 1 | * * 1 * * *.xo.&#x | 0 2 1 0 | 0 0 1 2 0 0 0 | * * * 1 * *.ooo&#x | 0 1 1 1 | 0 0 0 1 1 1 0 | * * * * 2 *..ox&#x | 0 0 1 2 | 0 0 0 0 0 2 1 | * * * * * 1

qo ox4oo&#zx   → height = 0(tegum sum of q-line and perp {4})(tegum product of q-line with {4})o. o.4o.    | 2 * | 4 0 | 4.o .o4.o    | * 4 | 2 2 | 4------------+-----+-----+--oo oo4oo&#x | 1 1 | 8 * | 2.. .x ..    | 0 2 | * 4 | 2------------+-----+-----+--.. ox ..&#x | 1 2 | 2 1 | 8

qo ox ox&#zx   → height = 0(tegum sum of q-line and perp {4})(tegum product of q-line with {4})o. o. o.    | 2 * | 4 0 0 | 2 2.o .o .o    | * 4 | 2 1 1 | 2 2------------+-----+-------+----oo oo oo&#x | 1 1 | 8 * * | 1 1.. .x ..    | 0 2 | * 2 * | 2 0.. .. .x    | 0 2 | * * 2 | 0 2------------+-----+-------+----.. ox ..&#x | 1 2 | 2 1 0 | 4 *.. .. ox&#x | 1 2 | 2 0 1 | * 4

qoo oqo ooq&#zx   → all heights = 0(tegum sum of 3 perp q-lines)(tegum product of 3 q-lines)o.. o.. o..    | 2 * * | 2 2 0 | 4.o. .o. .o.    | * 2 * | 2 0 2 | 4..o ..o ..o    | * * 2 | 0 2 2 | 4---------------+-------+-------+--oo. oo. oo.&#x | 1 1 0 | 4 * * | 2o.o o.o o.o&#x | 1 0 1 | * 4 * | 2.oo .oo .oo&#x | 0 1 1 | * * 4 | 2---------------+-------+-------+--ooo ooo ooo&#x | 1 1 1 | 1 1 1 | 8

oooooo&#xr   → all consecutive pairwise heights = all alternating pairwise heights = 1               Note: these lengths show that this cycle isnot flat, rather it is wobbling up and down!o.....     & | 6 | 2 2 | 3 1-------------+---+-----+----oo....&#x  & | 2 | 6 * | 2 0o.o...&#x  & | 2 | * 6 | 1 1-------------+---+-----+----ooo...&#x  & | 3 | 2 1 | 6 *o.o.o.&#x  & | 3 | 0 3 | * 2

oxxo&#xt   → height(1,2) = height(3,4) = 1/sqrt(12) = 0.288675             height(2,3) = 1/sqrt(3) = 0.577350             Note: these lengths show that this tower isnot flat, rather it has additional leporello folds!o...     & |2 * | 2 2 0 0 | 1 1 2.o..     & | * 4 | 1 1 1 1 | 1 1 2-----------+-----+---------+------oo..&#x  & | 1 1 | 4 * * * | 1 0 1o.o.&#x  & | 1 1 | * 4 * * | 0 1 1.x..     & | 0 2 | * * 2 * | 1 1 0.oo.&#x    | 0 2 | * * * 2 | 0 0 2-----------+-----+---------+------ox..&#x  & | 1 2 | 2 0 1 0 | 2 * *o.x.&#x  & | 1 2 | 0 2 1 0 | * 2 *ooo.&#x  & | 1 2 | 1 1 0 1 | * * 4

© 2004-2025
top of page

[8]ページ先頭

©2009-2025 Movatter.jp