Movatterモバイル変換


[0]ホーム

URL:


Acronymtet
TOCID symbolT, (2)Q
Nametetrahedron,
3Dsimplex3),
pyrochor(id),
regular trigonal pyramid,
digonal antiprism,
regular (di)sphenoid,
hemicube,
smaller Delone cell of face-centered cubic (fcc)lattice,
regular line-scalene,
regular (point-)tettene,
vertex figure ofpen,
Gosset polytope 02,
Waterman polyhedron number 1 wrt. face-centered cubiclattice A3 centered at a shallow hole
|,>,O deviceline pyramid pyramid =|>>
VRML
©
Circumradiussqrt(3/8) = 0.612372
Edge radius1/sqrt(8) = 0.353553
Inradius1/sqrt(24) = 0.204124
Vertex figure[33] = x3o
Snub derivation /
VRML
Vertex layers
LayerSymmetrySubsymmetries
 o3o3oo3o .o . o. o3o
1x3o3ox3o .
{3} first
x . o
edge first
. o3o
vertex first
2o3o .
opposite vertex
o . x
opposite edge
. x3o
vertex figure
opposite {3}
Lace city
in approx. ASCII-art
 o x o
Coordinates(1/sqrt(8), 1/sqrt(8), 1/sqrt(8))   & all permutations, all even changes of sign
Volumesqrt(2)/12 = 0.117851
Surfacesqrt(3) = 1.732051
Rel. Roundnessπ sqrt(3)/18 = 30.229989 %
General of army(is itself convex)
Colonel of regiment(is itself locally convex – no other uniform polyhedral members)
Dual(selfdual, in different orientation)
Dihedral angles
  • between {3} and {3}:   arccos(1/3) = 70.528779°
Face vector4, 6, 4
Confer
more general:
xPoPo  n/d-py  n/d-ap  
variations:
xo ox&#q  xo oq&#q  ho oh&#q  xo ox&#h  qo oq&#h  qo ou&#h  uo ou&#h  xo ox&#k  xo3oo&#q  qo3oo&#x  qo3oo&#h  
Grünbaumian relatives:
2tet  3tet  4tet  6tet  
blends:
tridpy  
compounds:
so  ki  e  sis  snu  dis  
general polytopal classes:
Wythoffian polyhedra  Catalan polyhedra  deltahedra  regular  noble polytopes  simplex  scalene  tettene  partial Stott expansions  segmentohedra  fundamental lace prisms  lace simplices  Coxeter-Elte-Gosset polytopes  
analogs:
regular simplex Sn  birectified simplex brSn  demihypercube Dn  rectified simplex pyramid rSn-py  
External
links
hedrondude  wikipedia  polytopewiki  WikiChoron  mathworld  quickfur

The number of ways to color the tetrahedron with different colors per face is 4!/12 = 2. – This is because the color group is the permutation group of 4 elements and has size 4!,while the order of the pure rotational tetrahedral group is 12. (The reflectional tetrahedral group would have twice as many, i.e. 24 elements.)

3D simplices with 3 alike faces aretrigonal pyramids (which thus is describable byox3oo&#y). Those with 2 alike faces aresphenoids. Those with 2 pairs of alike faces then aredisphenoids.The (regular) tetrahedron hence is just a special case of all these. More specially some authors even want to distinguish the various types of those disphenoids by means of additional attributions:atetragonal disphenoid will have four identicalisosceles triangles (which thus is describable byxo ox&#y or as digonalantiprism of arbitrary height), adigonal disphenoid has two types of isosceles triangles (which thus isxo oy&#z), arhombic disphenoid has four identicalscalene triangles, and aphyllic disphenoid has two types of scalene triangles, i.e. the latter two just are chiral versions of the formers.

Somehow off-topic there are some neet number relations between the tet and theoct:


Incidence matrix according toDynkin symbol

x3o3o. . . | 4 | 3 | 3------+---+---+--x . . | 2 | 6 | 2------+---+---+--x3o . | 3 | 3 | 4snubbed forms:β3o3o

x3o3/2o. .   . | 4 | 3 | 3--------+---+---+--x .   . | 2 | 6 | 2--------+---+---+--x3o   . | 3 | 3 | 4snubbed forms:β3o3/2o

x3/2o3o.   . . | 4 | 3 | 3--------+---+---+--x   . . | 2 | 6 | 2--------+---+---+--x3/2o . | 3 | 3 | 4snubbed forms:β3/2o3o

x3/2o3/2o.   .   . | 4 | 3 | 3----------+---+---+--x   .   . | 2 | 6 | 2----------+---+---+--x3/2o   . | 3 | 3 | 4snubbed forms:β3/2o3/2o

s4o3odemi( . . . ) |4 | 3 | 3--------------+---+---+--      s4o . 2 | 6 | 2--------------+---+---+--sefa( s4o3o ) | 3 | 3 | 4starting figure:x4o3o

s2s4odemi( . . . ) |4 | 2 1 | 3--------------+---+-----+--      s2s . 2 | 4 * | 2      . s4o 2 | * 2 | 2--------------+---+-----+--sefa( s2s4o ) | 3 | 2 1 | 4starting figure:x x4o

s2s2sdemi( . . . ) |4 | 1 1 1 | 3--------------+---+-------+--      s2s . 2 | 2 * * | 2      s 2 s 2 | * 2 * | 2      . s2s 2 | * * 2 | 2--------------+---+-------+--sefa( s2s2s ) | 3 | 1 1 1 | 4starting figure:x x x

xo3oo&#x   → height = sqrt(2/3) = 0.816497({3}|| pt)o.3o.    | 3 * | 2 1 | 1 2.o3.o    | *1 | 0 3 | 0 3---------+-----+-----+----x. ..    | 2 0 | 3 * | 1 1oo3oo&#x | 1 1 | * 3 | 0 2---------+-----+-----+----x.3o.    | 3 0 | 3 0 |1 *xo ..&#x | 2 1 | 1 2 | * 3

xo ox&#x   → height = 1/sqrt(2) = 0.707107(line|| perp line)o. o.    | 2 * | 1 2 0 | 2 1.o .o    | * 2 | 0 2 1 | 1 2---------+-----+-------+----x. ..    | 2 0 |1 * * | 2 0oo oo&#x | 1 1 | * 4 * | 1 1.. .x    | 0 2 | * *1 | 0 2---------+-----+-------+----xo ..&#x | 2 1 | 1 2 0 | 2 *.. ox&#x | 1 2 | 0 2 1 | * 2

oxo&#x   → height(1,2) = height(2,3) = sqrt(3)/2 = 0.866025           height(1,3) = 1( (pt|| line)|| pt)o..    |1 * * | 2 1 0 0 | 1 2 0.o.    | * 2 * | 1 0 1 1 | 1 1 1..o    | * *1 | 0 1 0 2 | 0 2 1-------+-------+---------+------oo.&#x | 1 1 0 | 2 * * * | 1 1 0o.o&#x | 1 0 1 | * 1 * * | 0 2 0.x.    | 0 2 0 | * *1 * | 1 0 1.oo&#x | 0 1 1 | * * * 2 | 0 1 1-------+-------+---------+------ox.&#x | 1 2 0 | 2 0 1 0 | 1 * *ooo&#x | 1 1 1 | 1 1 0 1 | * 2 *.xo&#x | 0 2 1 | 0 0 1 2 | * * 1

oooo&#x   → all pairwise heights = 1o...    |1 * * * | 1 1 1 0 0 0 | 1 1 1 0.o..    | *1 * * | 1 0 0 1 1 0 | 1 1 0 1..o.    | * *1 * | 0 1 0 1 0 1 | 1 0 1 1...o    | * * *1 | 0 0 1 0 1 1 | 0 1 1 1--------+---------+-------------+--------oo..&#x | 1 1 0 0 | 1 * * * * * | 1 1 0 0o.o.&#x | 1 0 1 0 | * 1 * * * * | 1 0 1 0o..o&#x | 1 0 0 1 | * * 1 * * * | 0 1 1 0.oo.&#x | 0 1 1 0 | * * * 1 * * | 1 0 0 1.o.o&#x | 0 1 0 1 | * * * * 1 * | 0 1 0 1..oo&#x | 0 0 1 1 | * * * * * 1 | 0 0 1 1--------+---------+-------------+--------ooo.&#x | 1 1 1 0 | 1 1 0 1 0 0 | 1 * * *oo.o&#x | 1 1 0 1 | 1 0 1 0 1 0 | * 1 * *o.oo&#x | 1 0 1 1 | 0 1 1 0 0 1 | * * 1 *.ooo&#x | 0 1 1 1 | 0 0 0 1 1 1 | * * * 1

© 2004-2025
top of page

[8]ページ先頭

©2009-2025 Movatter.jp