Movatterモバイル変換


[0]ホーム

URL:


Site MapPolytopesDynkin DiagramsVertex Figures, etc.Incidence MatricesIndex

Analogs

Sure, anything provided hereafter could be found already in the individual incidence matrix files, and sometimes also in some of the explanatory pages as well.None the less a missing link is that of dimensional analogy of the various members of a family of polytopes. Esp. for those generally existing cases.

In the followings some general dimensional series of polytopes get detailed.



Symmetry An

Regular Simplex Sn   (up)

These polytopes generally are self-dual. Further they are closely related to thepyramid product.In fact Sn here is nothing but the Sn-1 pyramid. Thence, by means of thelace prism notation, Sn = x3o...o3o (n nodes) can be described as well asox3oo...oo3oo&#x (n-1 node positions).

Dimension1D2D3D4D5DnD
Dynkin diagram
x
x3o
x3o3o
x3o3o3o
x3o3o3o3o
x3o...o3o
Acronym
line
trig
tet
pen
hix
n-simplex
Vertex Count23line4trig5tet6penn+1
Facet Count3line4trig5tet6penn+1
Circumradius1/2
0.5
1/sqrt(3)
0.577350
sqrt(3/8)
0.612372
sqrt(2/5)
0.632456
sqrt(5/12)
0.645497
sqrt(n)/sqrt[2(n+1)]
Inradius1/2
0.5
1/sqrt(12)
0.288675
1/sqrt(24)
0.204124
1/sqrt(40)
0.158114
1/sqrt(60)
0.129099
1/sqrt[2n(n+1)]
Height
0-dim first
1/2
0.5
sqrt(3)/2
0.866025
sqrt(2/3)
0.816497
sqrt(5/8)
0.790569
sqrt(3/5)
0.774597
sqrt[(n+1)/(2n)]
Height
1-dim first
sqrt(3)/2
0.866025
1/sqrt(2)
0.707107
sqrt(5/12)
0.645497
sqrt(6)/4
0.612372
sqrt[(n+1)/(4(n-1))]
Height
2-dim first
sqrt(2/3)
0.816497
sqrt(5/12)
0.645497
1/sqrt(3)
0.577350
sqrt[(n+1)/(6(n-2))]
Height
3-dim first
sqrt(5/8)
0.790569
sqrt(6)/4
0.612372
sqrt[(n+1)/(8(n-3))]
Height
4-dim first
sqrt(3/5)
0.774597
sqrt[(n+1)/(10(n-4))]
Volume1sqrt(3)/4
0.433013
sqrt(2)/12
0.117851
sqrt(5)/96
0.023292
sqrt(3)/480
0.0036084
sqrt[(n+1)/(2n)]/n!
Surface23sqrt(3)
1.732051
5 sqrt(2)/12
0.589256
sqrt(5)/16
0.139754
(n+1) sqrt[n/(2n-1)]/(n-1)!
Dihedral angles60°arccos(1/3)
70.528779°
arccos(1/4)
75.522488°
arccos(1/5)
78.463041°
arccos(1/n)
Dimension6D7D8D9D10DnD
Dynkin diagram
x3o3o3o3o3o
x3o3o3o3o3o3o
x3o3o3o3o3o3o3o
x3o3o3o3o3o3o3o3o
x3o3o3o3o3o3o3o3o3o
x3o...o3o
Acronym
hop
oca
ene
day
ux
n-simplex
Vertex Count7hix8hop9oca10ene11dayn+1
Facet Count7hix8hop9oca10ene11dayn+1
Circumradiussqrt(3/7)
0.654654
sqrt(7)/4
0.661438
2/3
0.666667
sqrt(9/20)
0.670820
sqrt(5/11)
0.674200
sqrt(n)/sqrt[2(n+1)]
Inradius1/sqrt(84)
0.109109
1/sqrt(112)
0.094491
1/12
0.083333
1/sqrt(180)
0.074536
1/sqrt(220)
0.067420
1/sqrt[2n(n+1)]
Height
0-dim first
sqrt(7/12)
0.763763
2/sqrt(7)
0.755929
3/4
0.75
sqrt(5)/3
0.745356
sqrt(11/20)
0.741620
sqrt[(n+1)/(2n)]
Height
1-dim first
sqrt(7/20)
0.591608
1/sqrt(3)
0.577350
3/sqrt(28)
0.566947
sqrt(5)/4
0.559017
sqrt(11)/6
0.552771
sqrt[(n+1)/(4(n-1))]
Height
2-dim first
sqrt(7/24)
0.540062
2/sqrt(15)
0.516398
1/2
0.5
sqrt(5/21)
0.487950
sqrt(11/48)
0.478714
sqrt[(n+1)/(6(n-2))]
Height
3-dim first
sqrt(7/24)
0.540062
1/2
0.5
3/sqrt(40)
0.474342
sqrt(5/24)
0.456435
sqrt(11/56)
0.443203
sqrt[(n+1)/(8(n-3))]
Height
4-dim first
sqrt(7/20)
0.591608
2/sqrt(15)
0.516398
3/sqrt(40)
0.474342
1/sqrt(5)
0.447214
sqrt(11/60)
0.428174
sqrt[(n+1)/(10(n-4))]
Height
5-dim first
sqrt(7/12)
0.763763
1/sqrt(3)
0.577350
1/2
0.5
sqrt(5/24)
0.456435
sqrt(11/60)
0.428174
sqrt[(n+1)/(12(n-5))]
Height
6-dim first
2/sqrt(7)
0.755929
3/sqrt(28)
0.566947
sqrt(5/21)
0.487950
sqrt(11/56)
0.443203
sqrt[(n+1)/(14(n-6))]
Height
7-dim first
3/4
0.75
sqrt(5)/4
0.559017
sqrt(11/48)
0.478714
sqrt[(n+1)/(16(n-7))]
Height
8-dim first
sqrt(5)/3
0.745356
sqrt(11)/6
0.552771
sqrt[(n+1)/(18(n-8))]
Height
9-dim first
sqrt(11/20)
0.741620
sqrt[(n+1)/(20(n-9))]
Volumesqrt(7)/5760
0.00045933
1/20160
0.000049603
1/215040
0.0000046503
sqrt(5)/5806080
0.00000038513
sqrt(11)/116121600
0.0000000028562
sqrt[(n+1)/(2n)]/n!
Surface7 sqrt(3)/480
0.025259
sqrt(7)/720
0.0036747
1/2240
0.00044643
1/21504
0.000046503
11 sqrt(5)/5806080
0.0000042364
(n+1) sqrt[n/(2n-1)]/(n-1)!
Dihedral anglesarccos(1/6)
80.405932°
arccos(1/7)
81.786789°
arccos(1/8)
82.819244°
arccos(1/9)
83.620630°
arccos(1/10)
84.260830°
arccos(1/n)

Rectified Simplex rSn   (up)

Within these polytopes rSn generally can be described as thesegmentotope oftheregular simplex Sn-1 atop the rectified simplex rSn-1.Thence, by means of thelace prism notation,rSn = o3x3o...o3o (n nodes) can be described as well asxo3ox3oo...oo3oo&#x (n-1 node positions).

Furthermore are rectified simplices special cases of theCoxeter-Elte-Gosset polytopes km,n, in fact those generally are clearly the ones of the form 0(n-1),1.

Dimension1D2D3D4D5DnD
Dynkin diagram 
o3x
o3x3o
o3x3o3o
o3x3o3o3o
o3x3o...o3o
Acronym
trig
oct
rap
rix
rect. n-simplex
Vertex Count3line6square10trip15tepen(n+1)/2
Facet Count
rect. facets
3line4trig5oct6rapn+1
Facet Count
verf facets
4trig5tet6penn+1
Circumradius1/sqrt(3)
0.577350
1/sqrt(2)
0.707107
sqrt(3/5)
0.774597
sqrt(2/3)
0.816497
sqrt[(n-1)/(n+1)]
Inradius wrt.
rect. facets
1/sqrt(6)
0.408248
1/sqrt(10)
0.316228
1/sqrt(15)
0.258199
sqrt(2)/sqrt[n(n+1)]
Inradius wrt.
verf facets
1/sqrt(12)
0.288675
1/sqrt(6)
0.408248
3/sqrt(40)
0.474342
2/sqrt(15)
0.516398
(n-1)/sqrt[2n(n+1)]
Volumesqrt(3)/4
0.433013
sqrt(2)/3
0.471405
11 sqrt(5)/96
0.256216
13 sqrt(3)/240
0.093819
(2n-n-1) sqrt[(n+1)/(2n)]/n!
Surface32 sqrt(3)
3.464102
25 sqrt(2)/12
2.946278
3 sqrt(5)/4
1.677051
(n+1)(2n-1-n+1) sqrt[n/(2n-1)]/(n-1)!
Dihedral angles
rect - rect
60°
verf - verf
arccos(1/4)
75.522488°
arccos(1/5)
78.463041°
arccos(1/n)
Dihedral angles
verf - rect
arccos(-1/3)
109.471221°
arccos(-1/4)
104.477512°
arccos(-1/5)
101.536959°
arccos(-1/n)
Dimension6D7D8D9D10DnD
Dynkin diagram
o3x3o3o3o3o
o3x3o3o3o3o3o
o3x3o3o3o3o3o3o
o3x3o3o3o3o3o3o3o
o3x3o3o3o3o3o3o3o3o
o3x3o...o3o
Acronym
ril
roc
rene
reday
ru
rect. n-simplex
Vertex Count21penp28hixip36hopip45ocpe55enepn(n+1)/2
Facet Count
rect. facets
7rix8ril9roc10rene11redayn+1
Facet Count
verf facets
7hix8hop9oca10ene11dayn+1
Circumradiussqrt(5/7)
0.845154
sqrt(3)/2
0.866025
sqrt(7)/3
0.881917
2/sqrt(5)
0.894427
3/sqrt(11)
0.904534
sqrt[(n-1)/(n+1)]
Inradius wrt.
rect. facets
1/sqrt(21)
0.218218
1/sqrt(28)
0.188982
1/6
0.166667
1/sqrt(45)
0.149071
1/sqrt(55)
0.134840
sqrt(2)/sqrt[n(n+1)]
Inradius wrt.
verf facets
5/sqrt(84)
0.545545
3/sqrt(28)
0.566947
7/12
0.583333
4/sqrt(45)
0.596285
9/sqrt(220)
0.606780
(n-1)/sqrt[2n(n+1)]
Volume19 sqrt(7)/1920
0.026182
1/168
0.0059524
247/215040
0.0011486
251 sqrt(5)/2903040
0.00019333
1013 sqrt(11)/116121600
0.000028933
(2n-n-1) sqrt[(n+1)/(2n)]/n!
Surface63 sqrt(3)/160
0.681995
29 sqrt(7)/360
0.213130
121/2240
0.054018
31/2688
0.011533
5533 sqrt(5)/5806080
0.0021309
(n+1)(2n-1-n+1) sqrt[n/(2n-1)]/(n-1)!
Dihedral angles
rect - rect
arccos(1/6)
80.405932°
arccos(1/7)
81.786789°
arccos(1/8)
82.819244°
arccos(1/9)
83.620630°
arccos(1/10)
84.260830°
arccos(1/n)
Dihedral angles
verf - rect
arccos(-1/6)
99.594068°
arccos(-1/7)
98.213211°
arccos(-1/8)
97.180756°
arccos(-1/9)
96.379370°
arccos(-1/10)
95.739170°
arccos(-1/n)

Facetorectified Simplex frSn   (up)

These non-convex polytopes frSn generally are facetings of therectified simplex rSn.

According to the fact that the mere Wythoffian construction providesGrünbaumian polytopes only,it is the secondary operation of replacing those double covered facets by single covers instead, which breaks down their orientability for all odd dimensions.Thence there avolume cannot be calculated.For the even dimensional cases we observe that no hemifacets occur and that the facet types alternate between prograde and retrograde wrt. the increasing absolute values of their inradii.

From the above shownsegmentotope representation of therectified simplex rSn,it becomes obvious that the polytopes frSn likewise can be given as such, though non-covex for sure, being generally the stack of thesimplex Sn-1 atop the facetorectified simplex frSn-1.

Dimension3D4D5D6DnD
Dynkin diagram
hemi(x3o3/2x )
hemi(x3o3o3/2x )
hemi(x3o3o3o3/2x )
hemi(x3o3o3o3o3/2x )
hemi(x3o...o3o3/2x )
Acronym
thah
firp
firx
firl
facetorect. n-simplex
Vertex Count6101521n(n+1)/2
Facet Count
simplex
4trig5tet6pen7hixn+1
Facet Count
prism
3square
(hemi)
10trip15tepe21penpn(n+1)/2
Facet Count
duoprism
10triddip
(hemi)
35tratet(n-1)n(n+1)/6
Circumradius1/sqrt(2)
0.707107
sqrt(3/5)
0.774597
sqrt(2/3)
0.816497
sqrt(5/7)
0.845154
sqrt[(n-1)/(n+1)]
Inradius wrt.
simplex
1/sqrt(6)
0.408248
− 3/sqrt(40)
0.474342
2/sqrt(15)
0.516398
+ 5/sqrt(84)
0.545545
(n-1)/sqrt[2n(n+1)]
Inradius wrt.
prism
0+ 1/sqrt(60)
0.129099
1/sqrt(24)
0.204124
− 3/sqrt(140)
0.253546
(n-3)/sqrt[4(n-1)(n+1)]
Inradius wrt.
duoprism
0+ 1/sqrt(168)
0.077152
(n-5)/sqrt[6(n-2)(n+1)]
Volume-sqrt(5)/32
0.069877
-sqrt(7)/576
0.0045933
- / sqrt[(n+1)/2n+2]/((n/2)!)2
Surface3+sqrt(3)
4.732051
[5 sqrt(2)+30 sqrt(3)]/12
4.919383
[30+20 sqrt(2)+sqrt(5)]/16
3.782521
[7 sqrt(3)+105 sqrt(5)
+350 sqrt(6)]/480
2.300485
?
Dihedral angles
simp. - (next)
arccos[1/sqrt(3)]
54.735610°
arccos[sqrt(3/8)]
52.238756°
arccos[sqrt(2/5)]
50.768480°
arccos[sqrt(5/12)]
49.797034°
arccos[sqrt((n-1)/2n)]
Dihedral angles
prism - (next)
arccos(2/3)
48.189685°
(prism - prism)
45°??
Dihedral angles
duopr. - (next)
?
(duopr. - duopr.)
?
Dimension7D8D9D10DnD
Dynkin diagram
hemi(x3o3o3o3o3o3/2x )
hemi(x3o3o3o3o3o3o3/2x )
hemi(x3o3o3o3o3o3o3o3/2x )
hemi(x3o3o3o3o3o3o3o3o3/2x )
hemi(x3o...o3o3/2x )
Acronym
froc
?
?
?
facetorect. n-simplex
Vertex Count28364555n(n+1)/2
Facet Count
simplex
8hop9oca10ene11dayn+1
Facet Count
prism
28hixip36hopip45ocpe55enepn(n+1)/2
Facet Count
duoprism I
56trapen84trahix120trihop165trioc(n-1)n(n+1)/6
Facet Count
duoprism II
35tetdip
(hemi)
126tetpen210tethix330tethop(n-2)(n-1)n(n+1)/24
Facet Count
duoprism III
126pendip
(hemi)
462penhix(n-3)(n-2)(n-1)n(n+1)/120
Circumradiussqrt(3)/2
0.866025
sqrt(7)/3
0.881917
2/sqrt(5)
0.894427
3/sqrt(11)
0.904534
sqrt[(n-1)/(n+1)]
Inradius wrt.
simplex
3/sqrt(28)
0.566947
− 7/12
0.583333
4/sqrt(45)
0.596285
+ 9/sqrt(220)
0.606780
(n-1)/sqrt[2n(n+1)]
Inradius wrt.
prism
1/sqrt(12)
0.288675
+ 5/sqrt(252)
0.314970
3/sqrt(80)
0.335410
− 7/sqrt(396)
0.351763
(n-3)/sqrt[4(n-1)(n+1)]
Inradius wrt.
duoprism I
1/sqrt(60)
0.129099
− 1/6
0.166667
2/sqrt(105)
0.195180
+ 5/sqrt(528)
0.217597
(n-5)/sqrt[6(n-2)(n+1)]
Inradius wrt.
douprism II
0+ 1/sqrt(360)
0.052705
1/sqrt(120)
0.091287
− 3/sqrt(616)
0.120873
(n-7)/sqrt[8(n-3)(n+1)]
Inradius wrt.
douprism III
0+ 1/sqrt(660)
0.038925
(n-9)/sqrt[10(n-4)(n+1)]
Volume-1/6144
0.00016276
-sqrt(11)/921600
0.0000035988
- / sqrt[(n+1)/2n+2]/((n/2)!)2
Surface?????
Dihedral angles
simp. - (next)
arccos[sqrt(3/7)]
49.106605°
arccos[sqrt(7)/4]
48.590378°
arccos(2/3)
48.189685°
arccos[3/sqrt(20)]
47.869585°
arccos[sqrt((n-1)/2n)]
Dihedral angles
prism - (next)
?????
Dihedral angles
duopr. I - (next)
?????
Dihedral angles
duopr. II - (next)
?
(duopr. II - duopr. II)
???
Dihedral angles
duopr. III - (next)
?
(duopr. III - duopr. III)
?

Birectified Simplex brSn   (up)

Within these polytopes brSn generally can be described as thesegmentotope oftherectified simplex rSn-1 atop the birectified simplex brSn-1.Thence, by means of thelace prism notation,brSn = o3o3x3o...o3o (n nodes) can be described as well asoo3xo3ox3oo...oo3oo&#x (n-1 node positions).

Furthermore are birectified simplices special cases of theCoxeter-Elte-Gosset polytopes km,n, in fact those generally are clearly the ones of the form 0(n-2),2.

Dimension3D4D5D6DnD
Dynkin diagram
o3o3x
o3o3x3o
o3o3x3o3o
o3o3x3o3o3o
o3o3x3o...o3o
Acronym
tet
rap
dot
bril
birect. n-simplex
Vertex Count4trig10trip20triddip35tratet(n-1)n(n+1)/6
Facet Count
rect. fac.
5oct6rap7rixn+1
Facet Count
birect. fac.
4trig5tet6rap7dotn+1
Circumradiussqrt(3/8)
0.612372
sqrt(3/5)
0.774597
sqrt(3)/2
0.866025
sqrt(6/7)
0.925820
sqrt[(3n-6)/(2n+2)]
Inradius wrt.
rect. facets
1/sqrt(24)
0.204124
1/sqrt(10)
0.316228
sqrt(3/20)
0.387298
2/sqrt(21)
0.436436
(n-2)/sqrt[2n(n+1)]
Inradius wrt.
birect. facets
3/sqrt(40)
0.474342
sqrt(3/20)
0.387298
sqrt(3/28)
0.327327
3/sqrt[2n(n+1)]
Volumesqrt(2)/12
0.117851
11 sqrt(5)/96
0.256216
11 sqrt(3)/80
0.238157
151 sqrt(7)/2880
0.138718
[3n-(n+1) 2n+n(n+1)/2] sqrt[(n+1)/2n]/n!
Surfacesqrt(3)
1.732051
25 sqrt(2)/12
2.946278
11 sqrt(5)/8
3.074593
161 sqrt(3)/120
2.323835
(n+1) [3n-1-(n-1) 2n-1+n(n-3)/2] sqrt[n/2n-1]/(n-1)!
Dihedral angles
rect. - rect.
arccos(1/4)
75.522488°
arccos(1/5)
78.463041°
arccos(1/6)
80.405932°
arccos(1/n)
Dihedral angles
rect. - birect.
arccos(-1/4)
104.477512°
arccos(-1/5)
101.536959°
arccos(-1/6)
99.594068°
arccos(-1/n)
Dihedral angles
birect. - birect.
arccos(1/3)
70.528779°
arccos(1/4)
75.522488°
arccos(1/5)
78.463041°
arccos(1/6)
80.405932°
arccos(1/n)
Dimension7D8D9D10DnD
Dynkin diagram
o3o3x3o3o3o3o
o3o3x3o3o3o3o3o
o3o3x3o3o3o3o3o3o
o3o3x3o3o3o3o3o3o3o
o3o3x3o...o3o
Acronym
broc
brene
breday
bru
birect. n-simplex
Vertex Count56trapen84trahix120trahop165traoc(n-1)n(n+1)/6
Facet Count
rect. facets
8ril9roc10rene11redayn+1
Facet Count
birect. facets
8bril9broc10brene11bredayn+1
Circumradiussqrt(15)/4
0.968246
1sqrt(21/20)
1.024695
sqrt(12/11)
1.044466
sqrt[(3n-6)/(2n+2)]
Inradius wrt.
rect. facets
5/sqrt(112)
0.472456
1/2
0.5
7/sqrt(180)
0.521749
4/sqrt(55)
0.539360
(n-2)/sqrt[2n(n+1)]
Inradius wrt.
birect. facets
3/sqrt(112)
0.283473
1/4
0.25
1/sqrt(20)
0.223607
3/sqrt(220)
0.202260
3/sqrt[2n(n+1)]
Volume397/6720
0.059077
1431/71680
0.019964
913 sqrt(5)/362880
0.0056259
299 sqrt(11)/725760
0.0013664
[3n-(n+1) 2n+n(n+1)/2] sqrt[(n+1)/2n]/n!
Surface359 sqrt(7)/720
1.319201
1311/2240
0.585268
1135/5376
0.211124
16621 sqrt(5)/580608
0.064012
(n+1) [3n-1-(n-1) 2n-1+n(n-3)/2] sqrt[n/2n-1]/(n-1)!
Dihedral angles
rect. - rect.
arccos(1/7)
81.786789°
arccos(1/8)
82.819244°
arccos(1/9)
83.620630°
arccos(1/10)
84.260830°
arccos(1/n)
Dihedral angles
rect. - birect.
arccos(-1/7)
98.213211°
arccos(-1/8)
97.180756°
arccos(-1/9)
96.379370°
arccos(-1/10)
95.739170°
arccos(-1/n)
Dihedral angles
birect. - birect.
arccos(1/7)
81.786789°
arccos(1/8)
82.819244°
arccos(1/9)
83.620630°
arccos(1/10)
84.260830°
arccos(1/n)

Truncated Simplex tSn   (up)

Within these polytopes tSn generally can be described as thebistratic lace tower oftheregular simplex Sn-1 atop anu-scaled Sn-1 atop the truncated simplex tSn-1.Thence, by means of thelace tower notation,tSn = x3x3o...o3o (n nodes) can be described as well asxux3oox3ooo...ooo3ooo&#xt (n-1 node positions).As such those also could be referred to as simplexialtutsatopes: in fact tutsatopes are quite similarily defined as theursatopes, just that the part that there was played (within 4D) by the lacingteddies here now is taken by accordingtuts.

Dimension1D2D3D4D5DnD
Dynkin diagram 
x3x
x3x3o
x3x3o3o
x3x3o3o3o
x3x3o...o3o
Acronym
hig
tut
tip
tix
trunc. n-simplex
Vertex Count6122030n(n+1)
Facet Count
trunc. facets
3line4hig5tut6tipn+1
Facet Count
verf facets
3line4trig5tet6penn+1
Circumradius1sqrt(11/8)
1.172604
sqrt(8/5)
1.264911
sqrt(7)/2
1.322876
sqrt[(5n-4)/(2n+2)]
Inradius wrt.
trunc. facets
sqrt(3)/2
0.866025
sqrt(3/8)
0.612372
3/sqrt(40)
0.474342
sqrt(3/20)
0.387298
3/sqrt[2n(n+1)]
Inradius wrt.
verf facets
sqrt(3)/2
0.866025
5/sqrt(24)
1.020621
7/sqrt(40)
1.106797
sqrt(27/20)
1.161895
(2n-1)/sqrt[2n(n+1)]
Volume3 sqrt(3)/2
2.598076
23 sqrt(2)/12
2.710576
19 sqrt(5)/24
1.770220
79 sqrt(3)/160
0.855200
(3n-n-1) sqrt[(n+1)/(2n)]/n!
Surface67 sqrt(3)
12.124356
10 sqrt(2)
14.142136
77 sqrt(5)/16
10.761077
(n+1)(3n-1-n+1) sqrt[n/(2n-1)]/(n-1)!
Dihedral angles
trunc - trunc
arccos(1/4)
75.522488°
arccos(1/5)
78.463041°
arccos(1/n)
Dihedral angles
verf - trunc
120°arccos(-1/3)
109.471221°
arccos(-1/4)
104.477512°
arccos(-1/5)
101.536959°
arccos(-1/n)
Dimension6D7D8D9D10DnD
Dynkin diagram
x3x3o3o3o3o
x3x3o3o3o3o3o
x3x3o3o3o3o3o3o
x3x3o3o3o3o3o3o3o
x3x3o3o3o3o3o3o3o3o
x3x3o...o3o
Acronym
til
toc
tene
teday
tu
trunc. n-simplex
Vertex Count42567290110n(n+1)
Facet Count
trunc. facets
7tix8til9toc10tene11tedayn+1
Facet Count
verf facets
7hix8hop9oca10ene11dayn+1
Circumradiussqrt(13/7)
1.362771
sqrt(31)/4
1.391941
sqrt(2)
1.414214
sqrt(41/20)
1.431782
sqrt(23/11)
1.445998
sqrt[(5n-4)/(2n+2)]
Inradius wrt.
trunc. facets
sqrt(3/28)
0.327327
3/sqrt(112)
0.283473
1/4
0.25
1/sqrt(20)
0.223607
3/sqrt(220)
0.202260
3/sqrt[2n(n+1)]
Inradius wrt.
verf facets
11/sqrt(84)
1.200198
13/sqrt(112)
1.228385
5/4
1.25
17/sqrt(180)
1.267105
19/sqrt(220)
1.280980
(2n-1)/sqrt[2n(n+1)]
Volume361 sqrt(7)/2880
0.331638
2179/20160
0.108085
39/1280
0.030469
19673 sqrt(5)/5806080
0.0075766
4217 sqrt(11)/8294400
0.0016862
(3n-n-1) sqrt[(n+1)/(2n)]/n!
Surface833 sqrt(3)/240
6.011660
241 sqrt(7)/240
2.656775
109/112
0.973214
6553/21504
0.304734
12023 sqrt(5)/322560
0.083346
(n+1)(3n-1-n+1) sqrt[n/(2n-1)]/(n-1)!
Dihedral angles
trunc - trunc
arccos(1/6)
80.405932°
arccos(1/7)
81.786789°
arccos(1/8)
82.819244°
arccos(1/9)
83.620630°
arccos(1/10)
84.260830°
arccos(1/n)
Dihedral angles
verf - trunc
arccos(-1/6)
99.594068°
arccos(-1/7)
98.213211°
arccos(-1/8)
97.180756°
arccos(-1/9)
96.379370°
arccos(-1/10)
95.739170°
arccos(-1/n)

Bitruncated Simplex btSn   (up)

Within these polytopes btSn for n>3 can be described as thebistratic lace towerof thetruncated simplex tSn-1 atop anu-scaledrectified simplex rSn-1 atop the bitruncated simplex btSn-1.Thence, by means of thelace tower notation, btSn =o3x3x3o...o3o (n nodes) can be described aswell asxoo3xux3oox3ooo...ooo3ooo&#xt (n-1 node positions).A posteriori that latter lace tower then applies even for n=3 too, thereby quite similarily just reducing to its first 2 node positions.

Dimension3D4D5D6DnD
Dynkin diagram
o3x3x
o3x3x3o
o3x3x3o3o
o3x3x3o3o3o
o3x3x3o...o3o
Acronym
tut
deca
bittix
batal
bitrunc. n-simplex
Vertex Count123060105(n+1)n(n-1)/2
Facet Count
bitrunc. fac.
4trig5tut6deca7bittixn+1
Facet Count
trunc. fac.
4hig5tut6tip7tixn+1
Circumradiussqrt(11/8)
1.172604
sqrt(2)
1.414214
sqrt(29/12)
1.554563
sqrt(19/7)
1.647509
sqrt[(9n-16)/(2n+2)]
Inradius
bitrunc. fac.
5/sqrt(24)
1.020621
sqrt(5/8)
0.790569
sqrt(5/12)
0.645497
5/sqrt(84)
0.545545
5/sqrt[2n(n+1)]
Inradius
trunc. fac.
sqrt(3/8)
0.612372
sqrt(5/8)
0.790569
7/sqrt(60)
0.903696
sqrt(27/28)
0.981981
(2n-3)/sqrt[2n(n+1)]
Volume23 sqrt(2)/12
2.710576
115 sqrt(5)/48
5.357246
841 sqrt(3)/240
6.069395
??
Surface7 sqrt(3)
12.124356
115 sqrt(2)/6
27.105760
153 sqrt(5)/8
42.764800
??
Dihedral angles
bitrunc - bitrunc
arccos(1/4)
75.522488°
arccos(1/5)
78.463041°
arccos(1/6)
80.405932°
arccos(1/n)
Dihedral angles
bitrunc - trunc
arccos(-1/3)
109.471221°
arccos(-1/4)
104.477512°
arccos(-1/5)
101.536959°
arccos(-1/6)
99.594068°
arccos(-1/n)
Dihedral angles
trunc - trunc
arccos(1/3)
70.528779°
arccos(1/4)
75.522488°
arccos(1/5)
78.463041°
arccos(1/6)
80.405932°
arccos(1/n)
Dimension7D8D9D10DnD
Dynkin diagram
o3x3x3o3o3o3o
o3x3x3o3o3o3o3o
o3x3x3o3o3o3o3o3o
o3x3x3o3o3o3o3o3o3o
o3x3x3o...o3o
Acronym
bittoc
batene
biteday
?
bitrunc. n-simplex
Vertex Count168252360495(n+1)n(n-1)/2
Facet Count
bitrunc. fac.
8batal9bittoc10batene11bitedayn+1
Facet Count
trunc. fac.
8til9toc10tene11tedayn+1
Circumradiussqrt(47)/4
1.713914
sqrt(29)/3
1.795055
sqrt(13)/2
1.802776
sqrt(37/11)
1.834022
sqrt[(9n-16)/(2n+2)]
Inradius
bitrunc. fac.
5/sqrt(112)
0.472456
5/12
0.416667
sqrt(5)/6
0.372678
sqrt(5/44)
0.337100
5/sqrt[2n(n+1)]
Inradius
trunc. fac.
11/sqrt(112)
1.039402
13/12
1.083333
sqrt(45)/6
1.118034
17/sqrt(220)
1.146140
(2n-3)/sqrt[2n(n+1)]
Volume?????
Surface?????
Dihedral angles
bitrunc - bitrunc
arccos(1/7)
81.786789°
arccos(1/8)
82.819244°
arccos(1/9)
83.620630°
arccos(1/10)
84.260830°
arccos(1/n)
Dihedral angles
bitrunc - trunc
arccos(-1/7)
98.213211°
arccos(-1/8)
97.180756°
arccos(-1/9)
96.379370°
arccos(-1/10)
95.739170°
arccos(-1/n)
Dihedral angles
trunc - trunc
arccos(1/7)
81.786789°
arccos(1/8)
82.819244°
arccos(1/9)
83.620630°
arccos(1/10)
84.260830°
arccos(1/n)

Mid-rectified Simplex mrSn   (up)

This case applies toodd dimensions only. These also occur (scaled down) as intersection kernels of facet-regularbi-simplex compounds.Further they occur (again scaled) as equatorial mid-sections of the vertex-first oriented (then even-dimensional)hypercube Cn+1.

Note that those can be generally provided too as next-to-center rectified simplex alterprismsoo3oo3...xo3ox...3oo3oo&#x (n-1 node positions).

Dimension1D3D5D7D9DnD
(2k+1)D
Dynkin diagram
x
o3x3o
o3o3x3o3o
o3o3o3x3o3o3o
o3o3o3o3x3o3o3o3o
o3o...o3x3o...o3o
Acronym
line
oct
dot
he
icoy
mid-rect. n-simplex
Vertex Count26square20triddip70tetdip252pendip(n+1)!/[((n+1)/2)!]2
(2(k+1))!/((k+1)!)2
Facet Count4+4trig6+6rap8+8bril10+10trene2(n+1)
4(k+1)
Circumradius1/2
0.5
1/sqrt(2)
0.707107
sqrt(3)/2
0.866025
1sqrt(5)/2
1.118034
sqrt[(n+1)/8]
sqrt(k+1)/2
Inradius1/2
0.5
1/sqrt(6)
0.408248
sqrt(3/20)
0.387298
1/sqrt(7)
0.377964
sqrt(5)/6
0.372678
sqrt[(n+1)/(8n)]
sqrt[(k+1)/(8k+4)]
Volume1sqrt(2)/3
0.471405
11 sqrt(3)/80
0.238157
151/1260
0.119841
15619 sqrt(5)/580608
0.060153
?
Surface22 sqrt(3)
3.464102
11 sqrt(5)/8
3.074593
151 sqrt(7)/180
2.219491
??
Dihedral angles
wrt. mid-rect margin
arccos(-1/3)
109.471221°
arccos(-1/5)
101.536959°
arccos(-1/7)
98.213211°
arccos(-1/9)
96.379370°
arccos(-1/n)
Dihedral angles
wrt. offset margin
arccos(1/5)
78.463041°
arccos(1/7)
81.786789°
arccos(1/9)
83.620630°
arccos(1/n)

Mid-truncated Simplex mtSn   (up)

This case applies toeven dimensions only. These also occur (scaled down) as intersection kernels of facet-regularbi-simplex compounds.Further they occur (again scaled) as equatorial mid-sections of the vertex-first oriented (then odd-dimensional)hypercube Cn+1.

Dimension2D4D6D8D10DnD
(2k)D
Dynkin diagram
x3x
o3x3x3o
o3o3x3x3o3o
o3o3o3x3x3o3o3o
o3o3o3o3x3x3o3o3o3o
o3o...o3x3x3o...o3o
Acronym
hig
deca
fe
be
?
mid-trunc. n-simplex
Vertex Count6301406302772(n+1)!/((n/2)!)2
(2k+1)!/(k!)2
Facet Count3+3line5+5tut7+7bittix9+9tattoc11+11?2(n+1)
2(2k+1)
Circumradius1sqrt(2)
1.414214
sqrt(3)
1.732051
2sqrt(5)
2.236068
sqrt(n/2)
sqrt(k)
Inradiussqrt(3)/2
0.866025
sqrt(5/8)
0.790569
sqrt(7/12)
0.763763
3/4
0.75
sqrt(11/20)
0.741620
sqrt[(n+1)/(2n)]
sqrt[(2k+1)/(4k)]
Volume3 sqrt(3)/2
2.598076
115 sqrt(5)/48
5.357246
5887 sqrt(7)/1440
10.816346
???
Surface6115 sqrt(2)/6
27.105760
5887 sqrt(3)/120
84.971526
???
Dihedral angles
wrt. mid-trunc margin
120°arccos(-1/4)
104.477512°
arccos(-1/6)
99.594068°
arccos(-1/8)
97.180756°
arccos(-1/10)
95.739170°
arccos(-1/n)
Dihedral angles
wrt. offset margin
arccos(1/4)
75.522488°
arccos(1/6)
80.405932°
arccos(1/8)
82.819244°
arccos(1/10)
84.260830°
arccos(1/n)

Maximal Expanded Simplex eSn   (up)

The common unit circumradius of all these shows that they occur asvertex figure of an according dimensionalhoneycomb. In fact they are the hull-of-roots polytopes of the according dimensionalroot lattice An.Furthermore it forces that the facet-to-bodycenter pyramids all areCRF, i.e. that all these polytopes can bedecomposed accordingly.

Within these polytopes eSn generally can be described as thebistratic lace tower oftheregular simplex Sn-1 atop the maximal expanded simplex eSn-1 atop the dual regular simplex -Sn-1.Thence, by means of thelace tower notation,eSn = x3o...o3x (n nodes) can be described as well asxxo3ooo...ooo3oxx&#xt (n-1 node positions).Note that the midsection here is of the very same form eSn-1, just one dimension less. Therefore that mentioned unit circumradius property here simply follows by dimensional induction.

Dimension1D2D3D4D5DnD
Dynkin diagram 
x3x
x3o3x
x3o3o3x
x3o3o3o3x
x3o3o...o3o3x
Acronym
hig
co
spid
scad
max-exp. n-simplex
Vertex Count6122030n(n+1)
Facet Count
simplex
3+3line4+4trig5+5tet6+6penn+1 per type
Facet Count
prism
6square10+10trip15+15tepen(n+1)/2 per type
Facet Count
duoprism I
20triddip(n+1)n(n-1)/6 per type
Circumradius11111
Inradius wrt.
simplex facets
sqrt(3)/2
0.866025
sqrt(2/3)
0.816497
sqrt(5/8)
0.790569
sqrt(3/5)
0.774597
sqrt[(n+1)/2n]
Inradius wrt.
prism facets
1/sqrt(2)
0.707107
sqrt(5/12)
0.645497
sqrt(3/8)
0.612372
sqrt[(n+1)/(4n-4)]
Inradius wrt.
d.pr. I fac.
1/sqrt(3)
0.577350
sqrt[(n+1)/(6n-12)]
Volume3 sqrt(3)/2
2.598076
5 sqrt(2)/3
2.357023
35 sqrt(5)/48
1.630466
21 sqrt(3)/40
0.909327
(2n)! sqrt[(n+1)/(2n)]/(n!)3
Surface66+2 sqrt(3)
9.464102
5 sqrt(2)/6+5 sqrt(3)
9.838765
(30+20 sqrt(2)+sqrt(5))/8
7.565042
?
Dihedral angles
simplex - (next)
120°arccos[-1/sqrt(3)]
125.264390°
arccos(-sqrt(3/8))
127.761244°
arccos[-sqrt(2/5)]
129.231520°
arccos[-sqrt((n-1)/2n)]
Dihedral angles
prism - (next)
arccos(-2/3)
131.810315°
135°arccos[-sqrt((2n-4)/(3n-3)]
Dimension6D7D8D9D10DnD
Dynkin diagram
x3o3o3o3o3x
x3o3o3o3o3o3x
x3o3o3o3o3o3o3x
x3o3o3o3o3o3o3o3x
x3o3o3o3o3o3o3o3o3x
x3o3o...o3o3x
Acronym
staf
suph
soxeb
?
?
max-exp. n-simplex
Vertex Count42567290110n(n+1)
Facet Count
simplex
7+7hix8+8hop9+9oca10+10ene11+11dayn+1 per type
Facet Count
prism
21+21penp28+28hixip36+36hopip45+45ocpe55+55enep(n+1)n/2 per type
Facet Count
duoprism I
35+35tratet56+56trapen84+84trahix120+120trihop165+165trioc(n+1)n(n-1)/6 per type
Facet Count
duoprism II
70tetdip126+126tetpen210+210tethix330+330tethop(n+1)n(n-1)(n-2)/24 per type
Facet Count
duoprism III
252pendip462+462penhix(n+1)n(n-1)(n-2)(n-3)/120 per type
Circumradius111111
Inradius wrt.
simplex facets
sqrt(7/12)
0.763763
2/sqrt(7)
0.755929
3/4
0.75
sqrt(5)/3
0.745356
sqrt(11/20)
0.741620
sqrt[(n+1)/2n]
Inradius wrt.
prism facets
sqrt(7/20)
0.591608
1/sqrt(3)
0.577350
3/sqrt(28)
0.566947
sqrt(5)/4
0.559017
sqrt(11)/6
0.552771
sqrt[(n+1)/(4n-4)]
Inradius wrt.
d.pr. I fac.
sqrt(7/24)
0.540062
2/sqrt(15)
0.516398
1/2
0.5
sqrt(5/21)
0.487950
sqrt(11/48)
0.478714
sqrt[(n+1)/(6n-12)]
Inradius wrt.
d.pr. II fac.
1/2
0.5
3/sqrt(40)
0.474342
sqrt(5/24)
0.456435
sqrt(11/56)
0.443203
sqrt[(n+1)/(8n-24)]
Inradius wrt.
d.pr. III fac.
1/sqrt(5)
0.447214
sqrt(11/60)
0.428174
sqrt[(n+1)/(10n-40)]
Volume77 sqrt(7)/480
0.424423
143/840
0.170238
429/7168
0.059849
2431 sqrt(5)/290304
0.018725
46189 sqrt(11)/29030400
0.0052769
(2n)! sqrt[(n+1)/(2n)]/(n!)3
Surface7[sqrt(3)+15 sqrt(5)+50 sqrt(6)]/240
4.600970
[350+42 sqrt(3)+sqrt(7)+105 sqrt(15)]/360
2.311264
????
Dihedral angles
simplex - (next)
arccos[-sqrt(5/12)]
130.202966°
arccos[-sqrt(3/7)]
130.893395°
arccos[-sqrt(7)/4]
131.409622°
arccos(-2/3)
131.810315°
arccos[-3/sqrt(20)]
132.130415°
arccos[-sqrt((n-1)/2n)]
Dihedral angles
prism - (next)
arccos[-sqrt(8/15)]
136.911277°
arccos[-sqrt(5)/3]
138.189685°
arccos[-2/sqrt(7)]
139.106605°
arccos[-sqrt(7/12)]
139.797034°
arccos[-4/sqrt(27)]
140.335965°
arccos[-sqrt((2n-4)/(3n-3))]
Dihedral angles
d.pr. I - (next)
??????
Dihedral angles
d.pr. II - (next)
????
Dihedral angles
d.pr. III - (next)
??

Interestingly this class belongs to an even wider class of (then mostlyhyperbolic) polytopes which all have that common property that the nD (or rather: rank n) representant occurs asridge faceting midsection within the (n+1)D case (for the finite cases) resp. as aridge faceting subspace within the rank n+1 case (for the infinite cases). This then is the general maximal-expanded classxPo3o...o3oPx, or, even more general, the class ofcyclotruncatedxPo3o...o3oPxQ*a. Below is a small enlisting thereof.

 
xPo3o...o3oPxQ*a
P = 3P = 4P = 5P = 6
Q = 2r = 1
x3o3x -cox3o3o3x -spidx3o3o3o3x -scadx3o3o3o3o3x -stafx3o3o3o3o3o3x -suphx3o3o3o3o3o3o3x -soxeb...
r = ∞
x4o4x -squatx4o3o4x -chonx4o3o3o4x -testx4o3o3o3o4x -penthx4o3o3o3o3o4x -axhx4o3o3o3o3o3o4x -hepth...
r = sqrt[-(1+sqrt(5))/2] = 1.272020i
x5o5x -tepetx5o3o5x -spiddedx5o3o3o5x...
r = sqrt(-1) = 1i
x6o6x -tehatx6o3o6x -spiddihexah...
Q = 3r = ∞
x3o3x3*a -thatx3o3o3x3*a -batatohx3o3o3o3x3*a -cytopitx3o3o3o3o3x3*a -cytaxhx3o3o3o3o3o3x3*a -cytloh...
r = sqrt(-1) = 1i
x4o4x3*a -tehatx4o3o4x3*a -cytochx4o3o3o4x3*a...
r = sqrt[-(sqrt(5)-1)/2] = 0.786151i
x5o5x3*a -phatx5o3o5x3*a...
r = 1/sqrt(-2) = 0.707107i
x6o6x3*a -shexat...
Q = 4r = sqrt(-1) = 1i
x3o3x4*a -tehatx3o3o3x4*a -cyticthx3o3o3o3x4*a...
r = 1/sqrt[-sqrt(2)] = 0.840896i
x4o4x4*a -teoctx4o3o4x4*a...
r = sqrt[(3+sqrt(2)-sqrt(5)-sqrt(10))/2]
  = 0.701474i
x5o5x4*a...
r = sqrt[-(sqrt(2)-1)] = 0.643594i
x6o6x4*a...

Retroexpanded Simplex reSn   (up)

These non-convex polytopes reSn generally are facetings of themaximal expanded simplexeSn.

While one third of the facets always are hemifacets and the second third could be considered to be prograde throughout,the remaining one would alternate wrt. its retrogradeness.Thence for the odd dimensional series members thevolume always results in zero.

Dimension3D4D5D6DnD
Dynkin diagram
o3x3x3/2*a
o3x3x3/2*a3o
o3x3x3/2*a3o3o
o3x3x3/2*a3o3o3o
o3x3x3/2*a3o...o3o
Acronym
oho
duhd
dehad
fohaf
retroexp. n-simplex
Vertex Count12203042n(n+1)
Facet Count
simplex
4+4trig5+5tet6+6pen7+7hixn+1 (each)
Facet Count
retroexp. simp.
4hig5oho6duhd7dehadn+1
Circumradius11111
Inradius wrt.
simplex facets
sqrt(2/3)
0.816497
sqrt(5/8)
0.790569
sqrt(3/5)
0.774597
sqrt(7/12)
0.763763
sqrt[(n+1)/2n]
Inradius wrt.
retroexp. simp.
00000
Volume05 sqrt(5)/8
0.232924
07 sqrt(7)/2880
0.0064306
0 / sqrt[(n+1)3/2n-2]/n!
Surface8 sqrt(3)
13.856406
5 sqrt(2)/6
1.178511
31 sqrt(5)/8
8.664763
7 sqrt(3)/240
0.050518
?
Dihedral angles
sim. - r.exp. sim.
arccos(1/3)
70.528779°
arccos(1/4)
75.522488°
arccos(1/5)
78.463041°
arccos(1/6)
80.405932°
arccos(1/n)
Dihedral angles
r.exp. s. - r.exp. s.
arccos(1/4)
75.522488°
arccos(1/5)
78.463041°
arccos(1/6)
80.405932°
arccos(1/n)
Dimension7D8D9D10DnD
Dynkin diagram
o3x3x3/2*a3o3o3o3o
o3x3x3/2*a3o3o3o3o3o
o3x3x3/2*a3o3o3o3o3o3o
o3x3x3/2*a3o3o3o3o3o3o3o
o3x3x3/2*a3o...o3o
Acronym
hehah
?
?
?
retroexp. n-simplex
Vertex Count567290110n(n+1)
Facet Count
simplex
8+8hop9+9oca10+10ene11+11dayn+1 per type
Facet Count
prism
8fohaf9hehah10?11?n+1
Circumradius11111
Inradius wrt.
simplex
2/sqrt(7)
0.755929
3/4
0.75
sqrt(5)/3
0.745356
sqrt(11/20)
0.741620
sqrt[(n+1)/2n]
Inradius wrt.
retroexp. simp.
00000
Volume03/35840
0.000083705
011 sqrt(11)/58060800
0.00000062836
0 / sqrt[(n+1)3/2n-2]/n!
Surface?????
Dihedral angles
sim. - r.exp. sim.
arccos(1/7)
81.786789°
arccos(1/8)
82.819244°
arccos(1/9)
83.620630°
arccos(1/10)
84.260830°
arccos(1/n)
Dihedral angles
r.exp. sim. - r.exp. sim.
arccos(1/7)
81.786789°
arccos(1/8)
82.819244°
arccos(1/9)
83.620630°
arccos(1/10)
84.260830°
arccos(1/n)

Omnitruncated Simplex otSn   (up)

These polytopes otSn also are known aspermutotopes Pn+1 and in fact the set of their vertices each can be found to be in one-to-one correspondence, that is being mapped from and therefore being labeled by the permutations of the first n+1 natural numbersin such a way that the edges will represent the set oftranspositions (permutations of any 2 elements only).

This very labeling moreover shows that each otSn also can be represented within an n-dimensional subspace ofthe (n+1)-dimensional space, where that labeling just is given by the respective all-integer coordinates.In fact this representation then is nothing but a sqrt(2)-scaled version of otSn when being used asone of the facets of the also sqrt(2)-scaled otSn+1.

It further should be mentioned that otSn generally is also the Voronoi cell of theroot lattice An*. It therefore always allows for anoble periodic continuation as aeuclidean honeycomb, the Voronoi complex V(An*) =x3x3x3...x3*a.

Dimension1D2D3D4D5DnD
Dynkin diagram
x
x3x
x3x3x
x3x3x3x
x3x3x3x3x
x3x...x3x
Acronym
dyad
hig
toe
gippid
gocad
omnitr. n-simplex
Vertex Count2624120720(n+1)!
Facet Count
wrt. type 1
2vertex3line4hig5toe6gippidn+1
(n+1)!/[n! 1!]
Facet Count
wrt. type 2
3line6square10hip15topen(n+1)/2
(n+1)!/[(n-1)! 2!]
Facet Count
wrt. type 3
4hig10hip20hiddip(n+1)!/[(n-2)! 3!]
Facet Count
wrt. type 4
5toe15tope(n+1)!/[(n-3)! 4!]
Facet Count
wrt. type 5
6gippid(n+1)!/[(n-4)! 5!]
Circumradius1/2
0.5
1sqrt(5/2)
1.581139
sqrt(5)
2.236068
sqrt(35)/2
2.958040
sqrt[(n+2)!/((n-1)! 4!)]
Inradius wrt.
facet type 1
1/2
0.5
sqrt(3)/2
0.866025
sqrt(3/2)
1.224745
sqrt(5/2)
1.581139
sqrt(15)/2
1.936492
sqrt[(n2+n)/8]
Inradius wrt.
facet type 2
sqrt(3)/2
0.866025
sqrt(2)
1.414214
sqrt(15)/2
1.936492
sqrt(6)
2.449490
sqrt(n2-1)/2
Inradius wrt.
facet type 3
sqrt(3/2)
1.224745
sqrt(15)/2
1.936492
sqrt(27)/2
2.598076
sqrt[3(n2-n-2)/8]
Inradius wrt.
facet type 4
sqrt(5/2)
1.581139
sqrt(6)
2.449490
sqrt[(n2-2n-3)/2]
Inradius wrt.
facet type 5
sqrt(15)/2
1.936492
sqrt[5(n2-3n-4)/8]
Volume13 sqrt(3)/2
2.598076
8 sqrt(2)
11.313708
125 sqrt(5)/4
69.877124
324 sqrt(3)
561.184462
(n+1)n-1 sqrt[(n+1)/(2n)]
Surface266+12 sqrt(3)
26.784610
???
Dihedral angles
types 1 - 2
120°arccos[-1/sqrt(3)]
125.264390°
arccos[-sqrt(3/8)]
127.761244°
arccos[-sqrt(2/5)]
129.231520°
arccos[-sqrt((n-1)/2n)]
Dihedral angles
types 1 - 3
arccos(-1/3)
109.471221°
arccos[-1/sqrt(6)]
114.094843°
arccos[-1/sqrt(5)]
116.565051°
?
Dihedral angles
types 1 - 4
arccos(-1/4)
104.477512°
arccos[-1/sqrt(10)]
108.434949°
?
Dihedral angles
types 1 - 5
arccos(-1/5)
101.536959°
?
Dihedral angles
types 2 - 3
arccos[-1/sqrt(3)]
125.264390°
arccos(-2/3)
131.810315°
135°arccos[-sqrt([2(n-2)]/[3(n-1)])]
Dihedral angles
types 2 - 4
arccos[-1/sqrt(6)]
114.094843°
120°?
Dihedral angles
types 2 - 5
arccos[-1/sqrt(10)]
108.434949°
?
Dihedral angles
types 3 - 4
arccos[-sqrt(3/8)]
127.761244°
135°arccos[-sqrt([3(n-3)]/[4(n-2)])]
Dihedral angles
types 3 - 5
arccos[-1/sqrt(5)]
116.565051°
?
Dihedral angles
types 4 - 5
arccos[-sqrt(2/5)]
129.231520°
arccos[-sqrt([4(n-4)]/[5(n-3)])]
Dimension6D7D8D9D10DnD
Dynkin diagram
x3x3x3x3x3x
x3x3x3x3x3x3x
x3x3x3x3x3x3x3x
x3x3x3x3x3x3x3x3x
x3x3x3x3x3x3x3x3x3x
x3x...x3x
Acronym
gotaf
guph
goxeb
?
?
omnitr. n-simplex
Vertex Count504040320362880362880039916800(n+1)!
Facet Count
wrt. type 1
7gocad8gotaf9guph10goxeb11?n+1
(n+1)!/[n! 1!]
Facet Count
wrt. type 2
21gippiddip28gocadip36gotafip45guphip55?n(n+1)/2
(n+1)!/[(n-1)! 2!]
Facet Count
wrt. type 3
35hatoe56hagippid84hagocad120hagotaf165haguph(n+1)!/[(n-2)! 3!]
Facet Count
wrt. type 4
35hatoe70toedip126toegippid210toegocad330toegotaf(n+1)!/[(n-3)! 4!]
Facet Count
wrt. type 5
21gippiddip56hagippid126toegippid252?462?(n+1)!/[(n-4)! 5!]
Facet Count
wrt. type 6
7gocad28gocadip84hagocad210toegocad462?(n+1)!/[(n-5)! 6!]
Facet Count
wrt. type 7
8gotaf36gotafip120hagotaf330toegotaf(n+1)!/[(n-6)! 7!]
Facet Count
wrt. type 8
9guph45guphip165haguph(n+1)!/[(n-7)! 8!]
Facet Count
wrt. type 9
10goxeb55?(n+1)!/[(n-8)! 9!]
Facet Count
wrt. type 10
11?(n+1)!/[(n-9)! 10!]
Circumradiussqrt(14)
3.741657
sqrt(21)
4.582576
sqrt(30)
5.477226
sqrt(165)/2
6.422616
sqrt(55)
7.416198
sqrt[(n+2)!/((n-1)! 4!)]
Inradius wrt.
facet type 1
sqrt(21)/2
2.291288
sqrt(7)
2.645751
33 sqrt(5)/2
3.354102
sqrt(55)/2
3.708099
sqrt[(n2+n)/8]
Inradius wrt.
facet type 2
sqrt(35)/2
2.958040
2 sqrt(3)
3.464102
sqrt(63)/2
3.968627
2 sqrt(5)
4.472136
3 sqrt(11)/2
4.974937
sqrt(n2-1)/2
Inradius wrt.
facet type 3
sqrt(21/2)
3.240370
sqrt(15)
3.872983
9/2
4.5
sqrt(105)/2
5.123475
sqrt(33)
5.744563
sqrt[3(n2-n-2)/8]
Inradius wrt.
facet type 4
sqrt(21/2)
3.240370
43 sqrt(5/2)
4.743416
sqrt(30)
5.477226
sqrt(77/2)
6.204837
sqrt[(n2-2n-3)/2]
Inradius wrt.
facet type 5
sqrt(35)/2
2.958040
sqrt(15)
3.872983
3 sqrt(5/2)
4.743416
5 sqrt(5)/2
5.590170
sqrt(165)/2
6.422616
sqrt[5(n2-3n-4)/8]
Inradius wrt.
facet type 6
sqrt(21)/2
2.291288
2 sqrt(3)
3.464102
9/2
4.5
sqrt(30)
5.477226
sqrt(165)/2
6.422616
sqrt[3(n2-4n-5)]/2
Inradius wrt.
facet type 7
sqrt(7)
2.645751
sqrt(63)/2
3.968627
sqrt(105)/2
5.123475
sqrt(77/2)
6.204837
sqrt[7(n2-5n-6)/8]
Inradius wrt.
facet type 8
32 sqrt(5)
4.472136
sqrt(33)
5.744563
sqrt(n2-6n-7)
Inradius wrt.
facet type 9
3 sqrt(5)/2
3.354102
3 sqrt(11)/2
4.974937
3 sqrt[(n2-7n-8)/8]
Inradius wrt.
facet type 10
sqrt(55)/2
3.708099
sqrt[5(n2-8n-9)]/2
Volume16807 sqrt(7)/8
5558.392786
6553614348907/16
896806.6875
??(n+1)n-1 sqrt[(n+1)/(2n)]
Surface??????
Dihedral angles
types 1 - 2
arccos[-sqrt(5/12)]
130.202966°
arccos[-sqrt(3/7)]
130.893395°
arccos[-sqrt(7)/4]
131.409622°
arccos(-2/3)
131.810315°
arccos[-3/sqrt(20)]
132.130415°
arccos[-sqrt((n-1)/2n)]
Dihedral angles
types 1 - 3
??????
Dihedral angles
types 1 - 4
??????
Dihedral angles
types 1 - 5
??????
Dihedral angles
types 1 - 6
??????
Dihedral angles
types 1 - 7
?????
Dihedral angles
types 1 - 8
????
Dihedral angles
types 1 - 9
???
Dihedral angles
types 1 - 10
??
Dihedral angles
types 2 - 3
arccos[-sqrt(8/15)]
136.911277°
arccos[-sqrt(5)/3]
138.189685°
arccos[-2/sqrt(7)]
139.106605°
arccos[-sqrt(7/12)]
139.797034°
arccos[-4/sqrt(27)]
140.335965°
arccos[-sqrt([2(n-2)]/[3(n-1)])]
Dihedral angles
types 2 - 4
??????
Dihedral angles
types 2 - 5
??????
Dihedral angles
types 2 - 6
??????
Dihedral angles
types 2 - 7
?????
Dihedral angles
types 2 - 8
????
Dihedral angles
types 2 - 9
???
Dihedral angles
types 2 - 10
??
Dihedral angles
types 3 - 4
arccos(-3/4)
138.590378°
arccos[-sqrt(3/5)]
140.768480°
arccos[-sqrt(5/8)]
142.238756°
arccos[-3/sqrt(14)]
143.300775°
arccos[-sqrt(21/32)]
144.104978°
arccos[-sqrt([3(n-3)]/[4(n-2)])]
Dihedral angles
types 3 - 5
??????
Dihedral angles
types 3 - 6
??????
Dihedral angles
types 3 - 7
?????
Dihedral angles
types 3 - 8
????
Dihedral angles
types 3 - 9
???
Dihedral angles
types 3 - 10
??
Dihedral angles
types 4 - 5
arccos[-sqrt(8/15)]
136.911277°
arccos[-sqrt(3/5)]
140.768480°
arccos(-4/5)
143.130102°
arccos[-sqrt(2/3)]
144.735610°
arccos[-sqrt(24/35)]
145.901874°
arccos[-sqrt([4(n-4)]/[5(n-3)])]
Dihedral angles
types 4 - 6
??????
Dihedral angles
types 4 - 7
?????
Dihedral angles
types 4 - 8
????
Dihedral angles
types 4 - 9
???
Dihedral angles
types 4 - 10
??
Dihedral angles
types 5 - 6
arccos[-sqrt(5/12)]
130.202966°
arccos[-sqrt(5)/3]
138.189685°
arccos[-sqrt(5/8)]
142.238756°
arccos[-sqrt(2/3)]
144.735610°
arccos(-5/6)
146.442690°
arccos[-sqrt([5(n-5)]/[6(n-4)])]
Dihedral angles
types 5 - 7
?????
Dihedral angles
types 5 - 8
????
Dihedral angles
types 5 - 9
???
Dihedral angles
types 5 - 10
??
Dihedral angles
types 6 - 7
arccos[-sqrt(3/7)]
130.893395°
arccos[-2/sqrt(7)]
139.106605°
arccos[-3/sqrt(14)]
143.300775°
arccos[-sqrt(24/35)]
145.901874°
arccos[-sqrt([6(n-6)]/[7(n-5)])]
Dihedral angles
types 6 - 8
????
Dihedral angles
types 6 - 9
???
Dihedral angles
types 6 - 10
??
Dihedral angles
types 7 - 8
arccos[-sqrt(7)/4]
131.409622°
arccos[-sqrt(7/12)]
139.797034°
arccos[-sqrt(21/32)]
144.104978°
arccos[-sqrt([7(n-7)]/[8(n-6)])]
Dihedral angles
types 7 - 9
???
Dihedral angles
types 7 - 10
??
Dihedral angles
types 8 - 9
arccos(-2/3)
131.810315°
arccos[-4/sqrt(27)]
140.335965°
arccos[-sqrt([8(n-8)]/[9(n-7)])]
Dihedral angles
types 8 - 10
??
Dihedral angles
types 9 - 10
arccos[-3/sqrt(20)]
132.130415°
arccos[-sqrt([9(n-9)]/[10(n-8)])]



Symmetry BCn

Regular Orthoplex On   (up)

These polytopes are closely related to thetegum product.In fact On here is nothing but the On-1bipyramid. Thence, by means of thetegum sum notation,On = x3o...o3o4o (n nodes) can be described as well asqo ox3oo...oo3oo4oo&#zx (n node positions).

On the other hand these polytopes On generally can also be described as thesegmentotope oftheregular simplex Sn-1 atop the dual simplex -Sn-1.Thence, by means of thelace prism notation,On = x3o...o3o4o (n nodes) can be described as well asxo3oo...oo3ox&#x (n-1 node positions).

The regular Orthoplex On generally is the dual of theregular hypercube Cn.

Dimension1D2D3D4D5DnD
Dynkin diagram
q
x4o
x3o4o
x3o3o4o
x3o3o3o4o
x3o...o3o4o
Acronym
q-line
square
oct
hex
tac
n-orthoplex
Vertex Count24q-line6square8oct10hex2n
Facet Count4line8trig16tet32pen2n
Circumradius1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
Inradius1/sqrt(2)
0.707107
1/2
0.5
1/sqrt(6)
0.408248
1/sqrt(8)
0.353553
1/sqrt(10)
0.316228
1/sqrt(2n)
Volumesqrt(2)
1.414214
1sqrt(2)/3
0.471405
1/6
0.166667
sqrt(2)/30
0.047140
sqrt(2n)/n!
Surface242 sqrt(3)
3.464102
4 sqrt(2)/3
1.885618
sqrt(5)/3
0.745356
2 sqrt[2n-1 n]/(n-1)!
Dihedral angles90°arccos(-1/3)
109.471221°
120°arccos(-3/5)
126.869898°
arccos(2/n - 1)
Dimension6D7D8D9D10DnD
Dynkin diagram
x3o3o3o3o4o
x3o3o3o3o3o4o
x3o3o3o3o3o3o4o
x3o3o3o3o3o3o3o4o
x3o3o3o3o3o3o3o3o4o
x3o...o3o4o
Acronym
gee
zee
ek
vee
ka
n-simplex
Vertex Count12tac14gee16zee18ek20vee2n
Facet Count64hix128hop256oca512ene1024day2n
Circumradius1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
Inradius1/sqrt(12)
0.288675
1/sqrt(14)
0.267261
1/4
0.25
1/sqrt(18)
0.235702
1/sqrt(20)
0.223607
1/sqrt(2n)
Volume1/90
0.011111
sqrt(2)/630
0.0022448
1/2520
0.00039683
sqrt(2)/22680
0.000062355
1/113400
0.0000088183
sqrt(2n)/n!
Surface2 sqrt(3)/15
0.230940
sqrt(7)/45
0.058794
4/315
0.012698
1/420
0.0023810
sqrt(5)/5670
0.00039437
2 sqrt[2n-1 n]/(n-1)!
Dihedral anglesarccos(-2/3)
131.810315°
arccos(-5/7)
135.584691°
arccos(-3/4)
138.590378°
arccos(-7/9)
141.057559°
arccos(-4/5)
143.130102°
arccos(2/n - 1)

Interestingly this class belongs to an even wider class of (then mostlyhyperbolic) polytopes which all have that common property that the nD (or rather: rank n) representant occurs asridge faceting midsection within the (n+1)D case (for the finite cases) resp. as aridge faceting subspace within the rank n+1 case (for the infinite cases). This then is the general regular class of theregularxPo3o...o3o4o. Within this class it happens moreover generally that this subspace additionally acts as a true mirror of symmetry.Below is a small enlisting thereof.

xPo3o...o3o4o
P = 3P = 4P = 5P = 6
r = 1/sqrt(2) = 0.707107
x3o4o -octx3o3o4o -hexx3o3o3o4o -tacx3o3o3o3o4o -geex3o3o3o3o3o4o -zeex3o3o3o3o3o3o4o -ekx3o3o3o3o3o3o3o4o -veex3o3o3o3o3o3o3o3o4o -ka...
r = ∞
x4o4o -squatx4o3o4o -chonx4o3o3o4o -testx4o3o3o3o4o -penthx4o3o3o3o3o4o -axhx4o3o3o3o3o3o4o -hepth...
r = sqrt[-1-sqrt(5)]/2 = 0.899454i
x5o4o -peatx5o3o4o -doehonx5o3o3o4o -shitte...
r = 1/sqrt(-2) = 0.707107i
x6o4o -shexatx6o3o4o -shexah...

Regular Hypercube Cn   (up)

These polytopes are closely related to theprism product.In fact Cn generally can be described as the Cn-1-prism, i.e. thesegmentotope ofthe regular hypercube Cn-1 atop the (identical) hypercube Cn-1.Thence, by means of thelace prism notation,Cn = o3o...o3o4x (n nodes) can be described as well asoo3oo...oo3oo4xx&#x (n-1 node positions).

The regular hypercube Cn generally is the dual of theregular orthoplex On.

Dimension1D2D3D4D5DnD
Dynkin diagram
x
o4x
o3o4x
o3o3o4x
o3o3o3o4x
o3o...o3o4x
Acronym
line
square
cube
tes
pent
n-hypercube
Vertex Count24q-line8q-trig16q-tet32q-pen2n
Facet Count4line6square8cube10tes2n
Circumradius1/2
0.5
1/sqrt(2)
0.707107
sqrt(3)/2
0.866025
1sqrt(5)/2
1.118034
sqrt(n)/2
Inradius1/2
0.5
1/2
0.5
1/2
0.5
1/2
0.5
1/2
0.5
1/2
0.5
Volume111111
Surface2468102n
Dihedral angles90°90°90°90°90°
Dimension6D7D8D9D10DnD
Dynkin diagram
o3o3o3o3o4x
o3o3o3o3o3o4x
o3o3o3o3o3o3o4x
o3o3o3o3o3o3o3o4x
o3o3o3o3o3o3o3o3o4x
o3o...o3o4x
Acronym
ax
hept
octo
enne
deker
n-hypercube
Vertex Count64q-hix128q-hop256q-oca512q-ene1024q-day2n
Facet Count12pent14ax16hept18octo20enne2n
Circumradiussqrt(3/2)
1.224745
sqrt(7)/2
1.322876
sqrt(2)
1.414214
3/2
1.5
sqrt(5/2)
1.581139
sqrt(n)/2
Inradius1/2
0.5
1/2
0.5
1/2
0.5
1/2
0.5
1/2
0.5
1/2
0.5
Volume111111
Surface12141618202n
Dihedral angles90°90°90°90°90°90°

Rectified Orthoplex rOn   (up)

The common unit circumradius of all these shows that they occur asvertex figure of an according dimensionalhoneycomb. In fact they are the hull-of-large-roots polytopes of the according dimensionalroot lattice Cn(or equivalently the hull-of-small-roots polytopes of the according dimensionalroot lattice Bn).Furthermore it forces that the facet-to-bodycenter pyramids all areCRF, i.e. that all these polytopes can bedecomposed accordingly.

Within these polytopes rOn generally can be described as thebistratic lace towerof theregular orthoplex On-1 atop the rectified orthoplex rOn-1 atop the regular orthoplex On-1.Thence, by means of thelace tower notation,rOn = o3x3o...o3o4o (n nodes) can be described as well asxox3oxo3ooo...ooo3ooo4ooo&#xt (n-1 node positions).

On the other hand these polytopes rOn generally can also be described within a different orientation as thebistratic lace tower of therectified simplex rSn-1 atop themaximal-expanded simplexeSn-1 atop the inverted rectified simplex -rSn-1.Thence, by means of thelace tower notation,rOn = o3x3o...o3o4o (n nodes) can be described as well asoxo3xoo3ooo...ooo3oox3oxo&#xt (n-1 node positions).As the according midsection therefore generally is eSn-1, and those polytopes already where mentioned to have this unit circumradius property,it becomes apparent that this property here applies as well.

Dimension3D4D5D6DnD
Dynkin diagram
o3x4o
o3x3o4o
o3x3o3o4o
o3x3o3o3o4o
o3x3o...o3o4o
Acronym
co
ico
rat
rag
rect. n-orthoplex
Vertex Count12x2q24cube40ope60hexip2n(n-1)
Facet Count
rect. facets
8trig16oct32rap64rix2n
Facet Count
verf facets
6square8oct10hex12tac2n
Circumradius11111
Inradius wrt.
rect. facets
sqrt(2/3)
0.816497
1/sqrt(2)
0.707107
sqrt(2/5)
0.632456
1/sqrt(3)
0.577350
sqrt(2/n)
Inradius wrt.
verf facets
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
Volume5 sqrt(2)/3
2.357023
29 sqrt(2)/10
1.272792
29/45
0.644444
(2n-n) sqrt(2n)/n!
Surface6+2 sqrt(3)
9.464102
8 sqrt(2)
11.313708
(5+11 sqrt(5))/3
9.865583
(6 sqrt(2)+52 sqrt(3))/15
6.570128
2 [n+(2n-1-n) sqrt(n)] sqrt(2n-1)/(n-1)!
Dihedral angles
rect. - orthopl.
arccos[-1/sqrt(3)]
125.264390°
120°arccos[-1/sqrt(5)]
116.565051°
arccos[-1/sqrt(6)]
114.094843°
arccos[-1/sqrt(n)]
Dihedral angles
rect. - rect.
arccos(-3/5)
126.869898°
arccos(-2/3)
131.810315°
arccos(2/n - 1)
Dimension7D8D9D10DnD
Dynkin diagram
o3x3o3o3o3o4o
o3x3o3o3o3o3o4o
o3x3o3o3o3o3o3o4o
o3x3o3o3o3o3o3o3o4o
o3x3o...o3o4o
Acronym
rez
rek
riv
rake
rect. n-orthoplex
Vertex Count84taccup112geep144zeep180ekip2n(n-1)
Facet Count
rect. facets
128ril256roc512rene1024reday2n
Facet Count
verf facets
14gee16zee18ek20vee2n
Circumradius11111
Inradius wrt.
rect. facets
sqrt(2/7)
0.534522
1/2
0.5
sqrt(2)/3
0.471405
1/sqrt(5)
0.447214
sqrt(2/n)
Inradius wrt.
verf facets
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
Volume121 sqrt(2)/630
0.271619
31/315
0.098413
503 sqrt(2)/22680
0.031365
169/18900
0.0089418
(2n-n) sqrt(2n)/n!
Surface(7+57 sqrt(7))/45
3.506841
(480+8 sqrt(2))/315
1.559726
25/42
0.595238
[5 sqrt(2)+502 sqrt(5)]/5760
0.199220
2 [n+(2n-1-n) sqrt(n)] sqrt(2n-1)/(n-1)!
Dihedral angles
rect. - orthopl.
arccos[-1/sqrt(7)]
112.207654°
arccos[-1/sqrt(8)]
110.704811°
arccos(-1/3)
109.471221°
arccos[-1/sqrt(10)]
108.434949°
arccos[-1/sqrt(n)]
Dihedral angles
rect. - rect.
arccos(-5/7)
135.584691°
arccos(-3/4)
138.590378°
arccos(-7/9)
141.057559°
arccos(-4/5)
143.130102°
arccos(2/n - 1)

Rectified Hypercube rCn   (up)

Within these polytopes rCn generally can be described as thebistratic lace towerof the rectified hypercube rCn-1 atop the q-scaledhypercube Cn-1 atop the (alike oriented) rectified hypercube rCn-1.Thence, by means of thelace tower notation,rCn = o3o...o3x4o (n nodes) can be described as well asooo3ooo...ooo3xox4oqo&#xt (n-1 node positions).

Dimension3D4D5D6DnD
Dynkin diagram
o3x4o
o3o3x4o
o3o3o3x4o
o3o3o3o3x4o
o3o...o3x4o
Acronym
co
rit
rin
rax
rect. n-hypercube
Vertex Count12x q32o3x q80o3o3x q192o3o3o3x qn 2n-1
Facet Count
rect. facets
6square8co10rit12rin2n
Facet Count
verf facets
8trig16tet32pen64hix2n
Circumradius1sqrt(3/2)
1.224745
sqrt(2)
1.414214
sqrt(5/2)
1.581139
sqrt[(n-1)/2]
Inradius wrt.
rect. facets
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
Inradius wrt.
verf facets
sqrt(2/3)
0.816497
3/sqrt(8)
1.060660
sqrt(8/5)
1.264911
5/sqrt(12)
1.443376
(n-1)/sqrt(2n)
Volume5 sqrt(2)/3
2.357023
23/6
3.833333
119 sqrt(2)/30
5.609714
719/90
7.988889
(n!-1) sqrt(2n)/n!
Surface6+2 sqrt(3)
9.464102
44 sqrt(2)/3
20.741799
(115+sqrt(5))/3
39.078689
(714 sqrt(2)+2 sqrt(3))/15
67.547506
[n!-n+sqrt(n)] sqrt(2n+1)/(n-1)!
Dihedral angles
rect. - simplex
arccos[-1/sqrt(3)]
125.264390°
120°arccos[-1/sqrt(5)]
116.565051°
arccos[-1/sqrt(6)]
114.094843°
arccos[-1/sqrt(n)]
Dihedral angles
rect. - rect.
90°90°90°90°
Dimension7D8D9D10DnD
Dynkin diagram
o3o3o3o3o3x4o
o3o3o3o3o3o3x4o
o3o3o3o3o3o3o3x4o
o3o3o3o3o3o3o3o3x4o
o3o...o3x4o
Acronym
rasa
recto
ren
rade
rect. n-hypercube
Vertex Count448102423045120n 2n-1
Facet Count
rect. facets
14rax16rasa18recto20ren2n
Facet Count
verf facets
128hop256oca512ene1024day2n
Circumradiussqrt(3)
1.732051
sqrt(7/2)
1.870829
23/sqrt(2)
2.121320
sqrt[(n-1)/2]
Inradius wrt.
rect. facets
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
Inradius wrt.
verf facets
6/sqrt(14)
1.603567
7/4
1.75
8/sqrt(18)
1.885618
9/sqrt(20)
2.012461
(n-1)/sqrt(2n)
Volume5039 sqrt(2)/630
11.311464
40319/2520
15.999603
362879 sqrt(2)/22680
22.627355
3628799/113400
31.999991
(n!-1) sqrt(2n)/n!
Surface(5033+sqrt(7)/45
111.903239
(4+40312 sqrt(2))/315
180.996118
60479/210
287.995238
(1814395 sqrt(2)+sqrt(5))/5670
452.547487
[n!-n+sqrt(n)] sqrt(2n+1)/(n-1)!
Dihedral angles
rect. - orthopl.
arccos[-1/sqrt(7)]
112.207654°
arccos[-1/sqrt(8)]
110.704811°
arccos(-1/3)
109.471221°
arccos[-1/sqrt(10)]
108.434949°
arccos[-1/sqrt(n)]
Dihedral angles
rect. - rect.
90°90°90°90°90°

Facetorectified Hypercube frCn   (up)

These non-convex polytopes frCn generally are facetings of therectified hypercube rCn.

Facets here always come within pairs – except for the hemifacets, which occur for the odd dimensional series members. Subsequent ones always alternate between prograde and retrograde. Thence for these odd dimensional series members thevolume always results in zero,as the facet pyramids of those hemifacets clearly are degenerate, while the other ones cancel out by means of those pairings, then using a prograde and a retrograde base respectively. For the even dimensional series members however, due to the missing hemifacets,those pairings will be either both pro- or both retrograde.

Dimension3D4D5D6DnD
Dynkin diagram
x3x3/2o3*a
x3x3/2o3o3*a
x3x3/2o3o3o3*a
x3x3/2o3o3o3o3*a
x3x3/2o3o...o3*a
Acronym
oho
firt
firn
forx
facetorect. n-hyp.c.
Vertex Count123280192n 2n-1
Facet Count
simplex
4+4trig8+8tet16+16pen32+32hix2n-1 (each)
Facet Count
trunc. simp.
4hig8+8tut16+16tip32+32tix2n-1 (each)
Facet Count
bitrunc. simp.
16deca32+32bittix2n-1 (each)
Circumradius1sqrt(3/2)
1.224745
sqrt(2)
1.414214
sqrt(5/2)
1.581139
sqrt[(n-1)/2]
Inradius wrt.
simplex
+/− sqrt(2/3)
0.816497
−/− 3/sqrt(8)
1.060660
+/− sqrt(8/5)
1.264911
+/+ 5/sqrt(12)
1.443376
(n-1)/sqrt(2n)
Inradius wrt.
trunc. simp.
0+/+ 1/sqrt(8)
0.353553
−/+ sqrt(2/5)
0.632456
−/− sqrt(3)/2
0.866025
(n-3)/sqrt(2n)
Inradius wrt.
bitrunc. simp.
0+/+ 1/sqrt(12)
0.288675
(n-5)/sqrt(2n)
Volume010/3
3.333333
0488/45
10.844444
0 / ?
Surface8 sqrt(3)
13.856406
32 sqrt(2)
45.254834
64 sqrt(5)
143.108351
256 sqrt(3)
443.405007
sqrt(n 8n-1)
Dihedral angles
sim. - trunc.sim.
arccos(1/3)
70.528779°
60°arccos(3/5)
53.130102°
arccos(2/3)
48.189685°
arccos[(n-2)/n]
Dihedral angles
tr.sim. - bitr.sim.
arccos(3/5)
53.130102°
arccos(2/3)
48.189685°
arccos[(n-2)/n]
Dihedral angles
k-tr.s. -k-tr.s.
60°arccos(2/3)
48.189685°
arccos[(n-2)/n]
n
2(k+1)
Dimension7D8D9D10DnD
Dynkin diagram
x3x3/2o3o3o3o3o3*a
x3x3/2o3o3o3o3o3o3*a
x3x3/2o3o3o3o3o3o3o3*a
x3x3/2o3o3o3o3o3o3o3o3*a
x3x3/2o3o...o3*a
Acronym
frasa
fro
fren
frade
facetorect. n-hyp.c.
Vertex Count448102423045120n 2n-1
Facet Count
simplex
64+64hop128+128oca256+256ene512+512day2n-1 (each)
Facet Count
trunc. simp.
64+64til128+128toc256+256tene512+512teday2n-1 (each)
Facet Count
bitrunc. simp.
64+64batal128+128bittoc256+256batene512+512biteday2n-1 (each)
Facet Count
tritrunc. simp.
64fe128+128tattoc256+256tatene512+512tatday (?)2n-1 (each)
Facet Count
quadritr. simp.
256be512+512quatday (?)2n-1 (each)
Circumradiussqrt(3)
1.732051
sqrt(7/2)
1.870829
23/sqrt(2)
2.121320
sqrt[(n-1)/2]
Inradius wrt.
simplex
+/− sqrt(18/7)
1.603567
−/− 7/4
1.75
+/− sqrt(32)/3
1.885618
+/+ 9/sqrt(20)
2.012461
(n-1)/sqrt(2n)
Inradius wrt.
trunc. simpl.
−/+ sqrt(8/7)
1.069045
+/+ 5/4
1.25
−/+ sqrt(2)
1.414214
−/− 7/sqrt(20)
1.565248
(n-3)/sqrt(2n)
Inradius wrt.
bitrunc. simpl.
+/− sqrt(2/7)
0.534522
−/− 3/4
0.75
+/− sqrt(8)/3
0.942809
+/+ sqrt(5)/2
1.118034
(n-5)/sqrt(2n)
Inradius wrt.
tritrunc. simpl.
0+/+ 1/4
0.25
−/+ sqrt(2)/3
0.471405
−/− 3/sqrt(20)
0.670820
(n-7)/sqrt(2n)
Inradius wrt.
quadritr. simpl.
0+/+ 1/sqrt(20)
0.223607
(n-9)/sqrt(2n)
Volume0?0?0 / ?
Surface512 sqrt(7)
1354.624671
40961228816384 sqrt(5)
36635.737743
sqrt(n 8n-1)
Dihedral angles
sim. - trunc.sim.
arccos(5/7)
44.415309°
arccos(3/4)
41.409622°
arccos(7/9)
38.942441°
arccos(4/5)
36.869898°
arccos[(n-2)/n]
Dihedral angles
tr.sim. - bitr.sim.
arccos(5/7)
44.415309°
arccos(3/4)
41.409622°
arccos(7/9)
38.942441°
arccos(4/5)
36.869898°
arccos[(n-2)/n]
Dihedral angles
bitr.sim. - tritr.sim.
arccos(5/7)
44.415309°
arccos(3/4)
41.409622°
arccos(7/9)
38.942441°
arccos(4/5)
36.869898°
arccos[(n-2)/n]
Dihedral angles
tritr.s. - quadrit.s.
arccos(7/9)
38.942441°
arccos(4/5)
36.869898°
arccos[(n-2)/n]
Dihedral angles
k-tr.s. -k-tr.s.
arccos(3/4)
41.409622°
arccos(4/5)
36.869898°
arccos[(n-2)/n]
n
2(k+1)

Birectified Orthoplex brOn   (up)

Within these polytopes brOn generally can be described as thebistratic lace towerof therectified orthoplex rOn-1 atop the birectified orthoplex brOn-1 atop the rectified orthoplex rOn-1.Thence, by means of thelace tower notation,brOn = o3o3x3o...o3o4o (n nodes) can be described as well asooo3xox3oxo3ooo...ooo3ooo4ooo&#xt (n-1 node positions).

On the other hand these polytopes brOn generally can also be described within a different orientation as a tristratic lace toweroooo3oxoo3ooxo3ooox3oooo...oooo3xooo3oxoo3ooxo3oooo&#xt (n-1 node positions),where the right hand decorations and the lefthand decorations for the smaller dimensions well might interlace, or in the extremal 3D case even overlay and run out of the other end:ouoo3oouo&#xt.

Dimension3D4D5D6DnD
Dynkin diagram
o3o4q
o3o3x4o
o3o3x3o4o
o3o3x3o3o4o
o3o3x3o...o3o4o
Acronym
q-cube
rit
nit
brag
birect. n-orthoplex
Vertex Count8u-trig32o3x q80tisdip160troct4n(n-1)(n-2)/3
Facet Count
birect. facets
16tet32rap64dot2n
Facet Count
rect. facets
6q-square8co10ico12rat2n
Circumradiussqrt(3/2)
1.224745
sqrt(3/2)
1.224745
sqrt(3/2)
1.224745
sqrt(3/2)
1.224745
sqrt(3/2)
1.224745
Inradius wrt.
birect. facets
3/sqrt(8)
1.060660
3/sqrt(10)
0.948683
sqrt(3)/2
0.866025
3/sqrt(2n)
Inradius wrt.
rect. facets
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
Volumesqrt(8)
2.828427
23/6
3.833333
31 sqrt(2)/10
4.384062
4(3n-n 2n+n(n-1)/2) sqrt(2n)/n!
Surface1244 sqrt(2)/3
20.741799
[60+11 sqrt(5)]/3
28.198916
(54 sqrt(2)+44 sqrt(3))/5
30.515554
(3n-1 sqrt(n 2n+1)-n(sqrt(n)-1) sqrt(23n-1)+n(n-1)(sqrt(n)-2) sqrt(2n-1))/(n-1)!
Dihedral angles
birect. - birect.
arccos(-3/5)
126.869898°
arccos(-2/3)
131.810315°
arccos(2/n - 1)
Dihedral angles
birect. - rect.
120°arccos[-1/sqrt(5)]
116.565051°
arccos[-1/sqrt(6)]
114.094843°
arccos[-1/sqrt(n)]
Dihedral angles
rect. - rect.
90°90°90°90°90°
Dimension7D8D9D10DnD
Dynkin diagram
o3o3x3o3o3o4o
o3o3x3o3o3o3o4o
o3o3x3o3o3o3o3o4o
o3o3x3o3o3o3o3o3o4o
o3o3x3o...o3o4o
Acronym
barz
bark
brav
brake
birect. n-orthoplex
Vertex Count280trahex448tratac672trigee960trizee4n(n-1)(n-2)/3
Facet Count
rect. facets
128bril256broc512brene1024breday2n
Facet Count
verf facets
14rag16rez18rek20riv2n
Circumradiussqrt(3/2)
1.224745
sqrt(3/2)
1.224745
sqrt(3/2)
1.224745
sqrt(3/2)
1.224745
sqrt(3/2)
1.224745
Inradius wrt.
birect. facets
3/sqrt(14)
0.801784
3/4
0.75
1/sqrt(2)
0.707107
3/sqrt(20)
0.670820
3/sqrt(2n)
Inradius wrt.
rect. facets
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
Volume656 sqrt(2)/315
2.945156
4541/2520
1.801984
1679 sqrt(2)/2520
0.942248
24427/56700
0.430811
(3n-n 2n+n(n-1)/2) sqrt(2n)/n!
Surface(406+302 sqrt(7))/45
26.778153
(4764+968 sqrt(2))/315
19.469710
1679/140
11.992857
(2515 sqrt(2)+14608 sqrt(5))/5670
6.388224
(3n-1 sqrt(n 2n+1)-n(sqrt(n)-1) sqrt(23n-1)+n(n-1)(sqrt(n)-2) sqrt(2n-1))/(n-1)!
Dihedral angles
birect. - birect.
arccos(-5/7)
135.584691°
arccos(-3/4)
138.590378°
arccos(-7/9)
141.057559°
arccos(-4/5)
143.130102°
arccos(2/n - 1)
Dihedral angles
birect. - rect.
arccos[-1/sqrt(7)]
112.207654°
arccos[-1/sqrt(8)]
110.704811°
arccos(-1/3)
109.471221°
arccos[-1/sqrt(10)]
108.434949°
arccos[-1/sqrt(n)]
Dihedral angles
rect. - rect.
90°90°90°90°90°

Birectified Hypercube brCn   (up)

Within these polytopes brCn generally can be described as thebistratic lace towerof the birectified hypercube brCn-1 atop therectified hypercube rCn-1 atop the birectified hypercube brCn-1.Thence, by means of thelace tower notation,brCn = o3o...o3x3o4o (n nodes) can be described as well asooo3ooo...ooo3xox3oxo4ooo&#xt (n-1 node positions).

Dimension3D4D5D6DnD
Dynkin diagram
x3o4o
o3x3o4o
o3o3x3o4o
o3o3o3x3o4o
o3o...o3x3o4o
Acronym
oct
ico
nit
brox
birect. n-hypercube
Vertex Count6square24cube80tisdip240squatetn(n-2) 2n-3
Facet Count
rect. simplex
8trig16oct32rap64rix2n
Facet Count
birect. h.cube
8oct10ico12nit2n
Circumradius1/sqrt(2)
0.707107
1sqrt(3/2)
1.224745
sqrt(2)
1.414214
sqrt[(n-2)/2]
Inradius wrt.
rect. simplex
1/sqrt(6)
0.408248
1/sqrt(2)
0.707107
3/sqrt(10)
0.948683
2/sqrt(3)
1.154701
(n-2)/sqrt(2n)
Inradius wrt.
birect. h.cube
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
Volumesqrt(2)/3
0.471405
231 sqrt(2)/10
4.384062
331/45
14.711111
?
Surface2 sqrt(3)
3.464102
8 sqrt(2)
11.313708
[60+11 sqrt(5)]/3
28.198916
122 sqrt(2)/3
57.511352
?
Dihedral angles
rect. - rect.
arccos(-1/3)
109.471221°
120°arccos(-3/5)
126.869898°
arccos(-2/3)
131.810315°
arccos(2/n-1)
Dihedral angles
rect. - birect.
120°arccos[-1/sqrt(5)]
116.565051°
arccos[-1/sqrt(6)]
114.094843°
arccos[-1/sqrt(n)]
Dihedral angles
birect. - birect.
90°90°90°
Dimension7D8D9D10DnD
Dynkin diagram
o3o3o3o3x3o4o
o3o3o3o3o3x3o4o
o3o3o3o3o3o3x3o4o
o3o3o3o3o3o3o3x3o4o
o3o...o3x3o4o
Acronym
bersa
bro
barn
brade
birect. n-hypercube
Vertex Count672squapen1792squahix4608squahop11520squocn(n-2) 2n-3
Facet Count
rect. simplex
128ril256roc512rene1024reday2n
Facet Count
birect. h.cube
14brox16bersa18bro20barn2n
Circumradiussqrt(5/2)
1.581139
sqrt(3)
1.732051
sqrt(7/2)
1.870829
2sqrt[(n-2)/2]
Inradius wrt.
rect. simplex
5/sqrt(14)
1.336306
3/2
1.5
7/sqrt(18)
1.649916
4/sqrt(5)
1.788854
(n-2)/sqrt(2n)
Inradius wrt.
birect. h.cube
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
Volume4919 sqrt(2)/630
11.042090
????
Surface?????
Dihedral angles
rect. - rect.
arccos(-5/7)
135.584691°
arccos(-3/4)
138.590378°
arccos(-7/9)
141.057559°
arccos(-4/5)
143.130102°
arccos(2/n - 1)
Dihedral angles
rect. - birect.
arccos[-1/sqrt(7)]
112.207654°
arccos[-1/sqrt(8)]
110.704811°
arccos(-1/3)
109.471221°
arccos[-1/sqrt(10)]
108.434949°
arccos[-1/sqrt(n)]
Dihedral angles
birect. - birect.
90°90°90°90°90°

Truncated Orthoplex tOn   (up)

Within these polytopes tOn generally can be described as the tetrastratic lace tower of theregular orthoplex On-1 atop the u-scaled regular orthoplex On-1 atop the truncated orthoplex tOn-1 atop the u-scaled regular orthoplex On-1 atop the regular orthoplex On-1.Thence, by means of thelace tower notation,tOn = x3x3o...o3o4o (n nodes) can be described as well asxuxux3ooxoo3ooooo...ooooo3ooooo4ooooo&#xt (n-1 node positions).

Dimension3D4D5D6DnD
Dynkin diagram
x3x4o
x3x3o4o
x3x3o3o4o
x3x3o3o3o4o
x3x3o...o3o4o
Acronym
toe
thex
tot
tag
trunc. n-orthoplex
Vertex Count2448801204n(n-1)
Facet Count
trunc. facets
8hig16tut32tip64tix2n
Facet Count
verf facets
6square8oct10hex12tac2n
Circumradiussqrt(5/2)
1.581139
sqrt(5/2)
1.581139
sqrt(5/2)
1.581139
sqrt(5/2)
1.581139
sqrt(5/2)
1.581139
Inradius wrt.
trunc. facets
sqrt(3/2)
1.224745
3/sqrt(8)
1.060660
3/sqrt(10)
0.948683
sqrt(3)/2
0.866025
3/sqrt(2n)
Inradius wrt.
verf facets
sqrt(2)
1.414214
sqrt(2)
1.414214
sqrt(2)
1.414214
sqrt(2)
1.414214
sqrt(2)
1.414214
Volume8 sqrt(2)
11.313708
77/6
12.833333
119 sqrt(2)/15
11.219428
241/30
8.033333
(3n-n) sqrt(2n)/n!
Surface6+12 sqrt(3)
26.784610
100 sqrt(2)/3
47.140452
(5+76 sqrt(5))/3
58.313722
(2 sqrt(2)+158 sqrt(3))/5
55.298491
2[n+(3n-1-n) sqrt(n)] sqrt(2n-1)/(n-1)!
Dihedral angles
trunc. - orthopl.
arccos[-1/sqrt(3)]
125.264390°
120°arccos[-1/sqrt(5)]
116.565051°
arccos[-1/sqrt(6)]
114.094843°
arccos[-1/sqrt(n)]
Dihedral angles
trunc. - trunc.
arccos(-1/3)
109.471221°
120°arccos(-3/5)
126.869898°
arccos(-2/3)
131.810315°
arccos(2/n - 1)
Dimension7D8D9D10DnD
Dynkin diagram
x3x3o3o3o3o4o
x3x3o3o3o3o3o4o
x3x3o3o3o3o3o3o4o
x3x3o3o3o3o3o3o3o4o
x3x3o...o3o4o
Acronym
taz
tek
tiv
take
trunc. n-orthoplex
Vertex Count1682242883604n(n-1)
Facet Count
trunc. facets
128til256toc512tene1024teday2n
Facet Count
verf facets
14gee16zee18ek20vee2n
Circumradiussqrt(5/2)
1.581139
sqrt(5/2)
1.581139
sqrt(5/2)
1.581139
sqrt(5/2)
1.581139
sqrt(5/2)
1.581139
Inradius wrt.
trunc. facets
3/sqrt(14)
0.801784
3/4
0.75
1/sqrt(2)
0.707107
3/sqrt(20)
0.670820
3/sqrt(2n)
Inradius wrt.
verf facets
sqrt(2)
1.414214
sqrt(2)
1.414214
sqrt(2)
1.414214
sqrt(2)
1.414214
sqrt(2)
1.414214
Volume218 sqrt(2)/63
4.893628
6553/2520
2.600397
1093 sqrt(2)/1260
1.226774
59039/113400
0.520626
(3n-n) sqrt(2n)/n!
Surface(7+722 sqrt(7))/45
42.605165
(8716+8 sqrt(2))/315
27.705758
437/28
15.607143
[5 sqrt(2)+19673 sqrt(5)]/5670
7.759654
2[n+(3n-1-n) sqrt(n)] sqrt(2n-1)/(n-1)!
Dihedral angles
trunc. - orthopl.
arccos[-1/sqrt(7)]
112.207654°
arccos[-1/sqrt(8)]
110.704811°
arccos(-1/3)
109.471221°
arccos[-1/sqrt(10)]
108.434949°
arccos[-1/sqrt(n)]
Dihedral angles
trunc. - trunc.
arccos(-5/7)
135.584691°
arccos(-3/4)
138.590378°
arccos(-7/9)
141.057559°
arccos(-4/5)
143.130102°
arccos(2/n - 1)

Truncated Hypercube tCn   (up)

Within these polytopes tCn generally can be described as the tristratic lace towerof the truncated hypercube tCn-1 atop the w-scaledregular hypercube Cn-1 atop a further w-scaled regular hypercube Cn-1 atop the truncated hypercube tCn-1.Thence, by means of thelace tower notation,tCn = o3o...o3x4x (n nodes) can be described as well asoooo3oooo...oooo3xoox4xwwx&#xt (n-1 node positions).

Dimension3D4D5D6DnD
Dynkin diagram
o3x4x
o3o3x4x
o3o3o3x4x
o3o3o3o3x4x
o3o...o3x4x
Acronym
tic
tat
tan
tox
trunc. n-hypercube
Vertex Count2464160384n 2n
Facet Count
trunc. facets
6oc8tic10tat12tan2n
Facet Count
verf facets
8trig16tet32pen64hix2n
Circumradiussqrt[7+4 sqrt(2)]/2
1.778824
sqrt[(5+3 sqrt(2))/2]
2.149726
sqrt[13+8 sqrt(2)]/2
2.465447
sqrt[(8+5 sqrt(2))/2]
2.745093
sqrt[(3n-2)+(2n-2) sqrt(2)]/2
Inradius wrt.
trunc. facets
[1+sqrt(2)]/2
1.207107
[1+sqrt(2)]/2
1.207107
[1+sqrt(2)]/2
1.207107
[1+sqrt(2)]/2
1.207107
[1+sqrt(2)]/2
1.207107
Inradius wrt.
verf facets
(3+2 sqrt(2))/sqrt(12)
1.682522
(3+2 sqrt(2))/sqrt(8)
2.060660
(5+4 sqrt(2))/sqrt(20)
2.382945
(5+3 sqrt(2))/sqrt(12)
2.668121
[n+(n-1) sqrt(2)]/sqrt(4n)
Volume(21+14 sqrt(2))/3
13.599663
(101+72 sqrt(2))/6
33.803896
(1230+869 sqrt(2))/30
81.965053
(8909+6300 sqrt(2))/90
197.983838
?
Surface12+12 sqrt(2)+2 sqrt(3)
32.434664
(168+116 sqrt(2))/3
110.682924
(505+360 sqrt(2)+sqrt(5))/3
338.784317
(7380+5214 sqrt(2)+2 sqrt(3))/15
983.811574
?
Dihedral angles
trunc. - simplex
arccos[-1/sqrt(3)]
125.264390°
120°arccos[-1/sqrt(5)]
116.565051°
arccos[-1/sqrt(6)]
114.094843°
arccos[-1/sqrt(n)]
Dihedral angles
trunc. - trunc.
90°90°90°90°90°
Dimension7D8D9D10DnD
Dynkin diagram
o3o3o3o3o3x4x
o3o3o3o3o3o3x4x
o3o3o3o3o3o3o3x4x
o3o3o3o3o3o3o3o3x4x
o3o...o3x4x
Acronym
tasa
tocto
ten
tade
trunc. n-hypercube
Vertex Count8962048460810240n 2n
Facet Count
trunc. facets
14tox16tasa18tocto20ten2n
Facet Count
verf facets
128hop256oca512ene1024day2n
Circumradiussqrt[19+12 sqrt(2)]/2
2.998773
sqrt[(11+7 sqrt(2))/2]
3.232607
sqrt[25+16 sqrt(2)]/2
3.450631
sqrt[(14+9 sqrt(2))/2]
3.655675
sqrt[(3n-2)+(2n-2) sqrt(2)]/2
Inradius wrt.
trunc. facets
[1+sqrt(2)]/2
1.207107
[1+sqrt(2)]/2
1.207107
[1+sqrt(2)]/2
1.207107
[1+sqrt(2)]/2
1.207107
[1+sqrt(2)]/2
1.207107
Inradius wrt.
verf facets
(7+6 sqrt(2))/sqrt(28)
2.926443
(7+4 sqrt(2))/4
3.164214
(9+8 sqrt(2))/6
3.385618
(9+5 sqrt(2))/sqrt(20)
3.593600
[n+(n-1) sqrt(2)]/sqrt(4n)
Volume?????
Surface?????
Dihedral angles
trunc. - simplex
arccos[-1/sqrt(7)]
112.207654°
arccos[-1/sqrt(8)]
110.704811°
arccos(-1/3)
109.471221°
arccos[-1/sqrt(10)]
108.434949°
arccos[-1/sqrt(n)]
Dihedral angles
trunc. - trunc.
90°90°90°90°90°

Quasitruncated Hypercube qtCn   (up)

These non-convex polytopes qtCn generally are nothing but the conjugates of thetruncated hypercube tCn.

Dimension3D4D5D6DnD
Dynkin diagram
o3x4/3x
o3o3x4/3x
o3o3o3x4/3x
o3o3o3o3x4/3x
o3o...o3x4/3x
Acronym
quith
quitit
quittin
quotox
quasitrunc. n-hypercube
Vertex Count2464160384n 2n
Facet Count
quasitr. fac.
6og8quith10quitit12quittin2n
Facet Count
verf facets
8trig16tet32pen64hix2n
Circumradiussqrt[7-4 sqrt(2)]/2
0.579471
sqrt[(5-3 sqrt(2))/2]
0.615370
sqrt[13-8 sqrt(2)]/2
0.649286
sqrt[(8-5 sqrt(2))/2]
0.681517
sqrt[(3n-2)-(2n-2) sqrt(2)]/2
Inradius wrt.
quasitr. fac.
[sqrt(2)-1]/2
0.207107
[sqrt(2)-1]/2
0.207107
[sqrt(2)-1]/2
0.207107
[sqrt(2)-1]/2
0.207107
[sqrt(2)-1]/2
0.207107
Inradius wrt.
verf facets
(3-2 sqrt(2))/sqrt(12)
+0.049529
(4-3 sqrt(2))/4
-0.060660
(5-4 sqrt(2))/sqrt(20)
-0.146877
(3 sqrt(2)-5)/sqrt(12)
-0.218631
[(n-1) sqrt(2)-n]/sqrt(4n)
Volume(21-14 sqrt(2))/3
0.400337
(72 sqrt(2)-101)/6
0.137229
(1230-869 sqrt(2))/30
0.034947
(6300 sqrt(2)-8909)/90
0.0060605
?
Surface-12+12 sqrt(2)+2 sqrt(3)
8.434664
56-36 sqrt(2)
5.088312
???
Dihedral angles
quasitr. - simpl.
arccos[1/sqrt(3)]
54.735610°
60°arccos[1/sqrt(5)]
63.434949°
arccos[1/sqrt(6)]
65.905157°
arccos[1/sqrt(n)]
Dihedral angles
quasitr. - quasitr.
90°90°90°90°90°
Dimension7D8D9D10DnD
Dynkin diagram
o3o3o3o3o3x4/3x
o3o3o3o3o3o3x4/3x
o3o3o3o3o3o3o3x4/3x
o3o3o3o3o3o3o3o3x4/3x
o3o...o3x4/3x
Acronym
quitasa
queto
quiten
quitade
quasitrunc. n-hypercube
Vertex Count8962048460810240n 2n
Facet Count
quasitr. fac.
14quotox16quitasa18queto20quiten2n
Facet Count
verf facets
128hop256oca512ene1024day2n
Circumradiussqrt[19-12 sqrt(2)]/2
0.712292
sqrt[(11-7 sqrt(2))/2]
0.741790
sqrt[25-16 sqrt(2)]/2
0.770160
sqrt[(14-9 sqrt(2))/2]
0.797521
sqrt[(3n-2)-(2n-2) sqrt(2)]/2
Inradius wrt.
quasitr. fac.
[sqrt(2)-1]/2
0.207107
[sqrt(2)-1]/2
0.207107
[sqrt(2)-1]/2
0.207107
[sqrt(2)-1]/2
0.207107
[sqrt(2)-1]/2
0.207107
Inradius wrt.
verf facets
(7-6 sqrt(2))/sqrt(28)
-0.280692
(4 sqrt(2)-7)/4
-0.335786
(9-8 sqrt(2))/6
-0.385618
(5 sqrt(2)-9)/sqrt(20)
-0.431322
[n-(n-1) sqrt(2)]/sqrt(4n)
Volume?????
Surface?????
Dihedral angles
quasitr. - simpl.
arccos[1/sqrt(7)]
67.792346°
arccos[1/sqrt(8)]
69.295189°
arccos(1/3)
70.528779°
arccos[1/sqrt(10)]
71.565051°
arccos[1/sqrt(n)]
Dihedral angles
quasitr. - quasitr.
90°90°90°90°90°

Bitruncated Hypercube btCn   (up)

Within these polytopes btCn generally can be described as a stack of the bitruncated hypercube btCn-1 atop u-scaledrectified hypercube rCn-1 atop an(x,q)-varianttruncated hypercube tCn-1 atop u-scaled rectified hypercube rCn-1 (again) atop the opposite bitruncated hypercube btCn-1.Thence, by means of thelace tower notation,btCn = o3o...o3x3x4o (n nodes) can be described as well asooooo3ooooo...ooooo3xooox3xuxux4ooqoo&#xt (n-1 node positions).This representation then shows up those right angles generally.

Dimension3D4D5D6DnD
Dynkin diagram
x3x4o
o3x3x4o
o3o3x3x4o
o3o3o3x3x4o
o3o...o3x3x4o
Acronym
toe
tah
bittin
botox
bitrunc. n-hypercube
Vertex Count2496320960n(n-1) 2n-1
Facet Count
bitrunc. fac.
6square8toe10tah12bittin2n
Facet Count
trunc. simpl.
8hig16tut32tip64tix2n
Circumradiussqrt(5/2)
1.581139
sqrt(9/2)
2.121320
sqrt(13/2)
2.549510
sqrt(17/2)
2.915476
sqrt[(4n-7)/2]
Inradius wrt.
bitrunc. fac.
sqrt(2)
1.414214
sqrt(2)
1.414214
sqrt(2)
1.414214
sqrt(2)
1.414214
sqrt(2)
1.414214
Inradius wrt.
trunc. simpl.
sqrt(3/2)
1.224745
5/sqrt(8)
1.767767
7/sqrt(10)
2.213594
sqrt(27)/2
2.598076
(2n-3)/sqrt(2n)
Volume8 sqrt(2)
11.313708
307/6
51.166667
1801 sqrt(2)/15
169.799908
??
Surface6+12 sqrt(3)
26.784610
????
Dihedral angles
trunc. - trunc.
arccos(-1/3)
109.471221°
120°arccos(-3/5)
126.869898°
arccos(-2/3)
131.810315°
arccos[-(n-2)/n]
Dihedral angles
trunc. - bitrunc
arccos[-1/sqrt(3)]
125.264390°
120°arccos[-1/sqrt(5)]
116.565051°
arccos[-1/sqrt(6)]
114.094843°
arccos[-1/sqrt(n)]
Dihedral angles
bitrunc. - bitrunc.
90°90°90°90°
Dimension7D8D9D10DnD
Dynkin diagram
o3o3o3o3x3x4o
o3o3o3o3o3x3x4o
o3o3o3o3o3o3x3x4o
o3o3o3o3o3o3o3x3x4o
o3o...o3x3x4o
Acronym
betsa
bato
?
?
bitrunc. n-hypercube
Vertex Count268871681843246080n(n-1) 2n-1
Facet Count
bitrunc. fac.
14botox16betsa18bato20?2n
Facet Count
trunc. simpl.
128til256toc512tene1024teday2n
Circumradiussqrt(21/2)
3.240370
5/sqrt(2)
3.535534
sqrt(29/2)
3.807887
sqrt(33/2)
4.062019
sqrt[(4n-7)/2]
Inradius wrt.
bitrunc. fac.
sqrt(2)
1.414214
sqrt(2)
1.414214
sqrt(2)
1.414214
sqrt(2)
1.414214
sqrt(2)
1.414214
Inradius wrt.
trunc. simpl.
11/sqrt(14)
2.939874
13/4
3.25
5/sqrt(2)
3.535534
17/sqrt(20)
3.801316
(2n-3)/sqrt(2n)
Volume?????
Surface?????
Dihedral angles
trunc. - trunc.
arccos(-5/7)
135.584691°
arccos(-3/4)
138.590378°
arccos(-7/9)
141.057559°
arccos(-4/5)
143.130102°
arccos[-(n-2)/n]
Dihedral angles
trunc. - bitrunc.
arccos[-1/sqrt(7)]
112.207654°
arccos[-1/sqrt(8)]
110.704811°
arccos(-1/3)
109.471221°
arccos[-1/sqrt(10)]
108.434949°
arccos[-1/sqrt(n)]
Dihedral angles
bitrunc. - bitrunc.
90°90°90°90°90°

Rhombated Hypercube rbCn   (up)
Dimension3D4D5D6DnD
Dynkin diagram
x3o4x
o3x3o4x
o3o3x3o4x
o3o3o3x3o4x
o3o...o3x3o4x
Acronym
sirco
srit
sirn
srox
rhomb. n-hypercube
Vertex Count2496320960n(n-1) 2n-1
Facet Count
rect. simpl.
8trig16oct32rap64rix2n
Facet Count
prism
12square32trip80tepe192penpn 2n-1
Facet Count
rhomb. hyp.cube
6square8sirco10srit12sirn2n
Circumradiussqrt[5+2 sqrt(2)]/2
1.398966
sqrt[2+sqrt(2)]
1.847759
[3+sqrt(2)]/2
2.207107
sqrt[(7+4 sqrt(2))/2]
2.515637
sqrt[3n-4+2(n-2) sqrt(2)]/2
Inradius wrt.
rect. simp. facets
[3+sqrt(2)]/sqrt(12)
1.274274
1+1/sqrt(2)
1.707107
sqrt[(43+30 sqrt(2))/20]
2.066717
sqrt[(17+12 sqrt(2))/6]
2.379445
sqrt[(3n2-8n+8+2n(n-2) sqrt(2))/4n]
Inradius wrt.
prism facets
(1+sqrt(2))/2
1.207107
sqrt[(17+12 sqrt(2))/12]
1.682522
sqrt[(17+12 sqrt(2))/8]
2.060660
sqrt[(57+40 sqrt(2))/20]
2.382945
sqrt[(3n2-10n+9+2(n-1)(n-2) sqrt(2))/(4(n-1))]
Inradius wrt.
rh. hyp.cub. facets
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
Volume[12+10 sqrt(2)]/3
8.714045
[45+32 sqrt(2)]/3
30.084945
[1205+843 sqrt(2)]/30
79.906068
[4426+3141 sqrt(2)]/45
197.067662
?
Surface18+2 sqrt(3)
21.464102
8[4+4 sqrt(2)+sqrt(3)]
91.111240
[450+340 sqrt(2)+11 sqrt(5)]/3
318.476453
??
Dihedral angles
rect. - prism
arccos[-sqrt(2/3)]
144.735610°
150°arccos[-2/sqrt(5)]
153.434949°
arccos[-sqrt(5/6)]
155.905157°
arccos[-sqrt((n-1)/n)]
Dihedral angles
rect. - rhomb.
120°arccos[-1/sqrt(5)]
116.565051°
arccos[-1/sqrt(6)]
114.094843°
arccos[-1/sqrt(n)]
Dihedral angles
prism - rhomb.
135°arccos[-1/sqrt(3)]
125.264390°
120°arccos[-1/sqrt(5)]
116.565051°
arccos[-1/sqrt(n-1)]
Dihedral angles
rhomb. - rhomb.
90°90°90°90°
Dimension7D8D9D10DnD
Dynkin diagram
o3o3o3o3x3o4x
o3o3o3o3o3x3o4x
o3o3o3o3o3o3x3o4x
o3o3o3o3o3o3o3x3o4x
o3o...o3x3o4x
Acronym
sersa
soro
?
?
rhomb. n-hypercube
Vertex Count268871681843246080n(n-1) 2n-1
Facet Count
rect. simpl.
128ril256roc512rene1024reday2n
Facet Count
prism
448hixip1024hopip2304ocpe5120enepn 2n-1
Facet Count
rhomb. hyp.cube
14srox16sersa18soro20?2n
Circumradiussqrt[17+10 sqrt(2)]/2
2.790257
sqrt[5+3 sqrt(2)]
3.040171
sqrt[23+14 sqrt(2)]/2
3.271047
sqrt[(13+8 sqrt(2))/2]
3.486668
sqrt[3n-4+2(n-2) sqrt(2)]/2
Inradius wrt.
rect. simp. facets
sqrt[(99+70 sqrt(2))/28]
2.659182
sqrt[17+12 sqrt(2)]/2
2.914214
sqrt[179+126 sqrt(2)]/6
3.149916
sqrt[(57+40 sqrt(2))/10]
3.369993
sqrt[(3n2-8n+8+2n(n-2) sqrt(2))/4n]
Inradius wrt.
prism facets
sqrt[(43+30 sqrt(2))/12]
2.668121
sqrt[(121+84 sqrt(2))/28]
2.926443
sqrt[81+56 sqrt(2)]/4
3.164214
sqrt[209+144 sqrt(2)]/6
3.385618
sqrt[(3n2-10n+9+2(n-1)(n-2) sqrt(2))/(4(n-1))]
Inradius wrt.
rh. hyp.cub. facets
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
Volume?????
Surface?????
Dihedral angles
rect. - prism
arccos[-sqrt(6/7)]
157.792346°
arccos[-sqrt(7/8)]
159.295189°
arccos[-sqrt(8/9)]
160.528779°
arccos[-sqrt(9/10)]
161.565051°
arccos[-sqrt((n-1)/n)]
Dihedral angles
rect. - rhomb.
arccos[-1/sqrt(7)]
112.207654°
arccos[-1/sqrt(8)]
110.704811°
arccos[-1/3]
109.471221°
arccos[-1/sqrt(10)]
108.434949°
arccos[-1/sqrt(n)]
Dihedral angles
prism - rhomb.
arccos[-1/sqrt(6)]
114.094843°
arccos[-1/sqrt(7)]
112.207654°
arccos[-1/sqrt(8)]
110.704811°
arccos[-1/3]
109.471221°
arccos[-1/sqrt(n-1)]
Dihedral angles
rhomb. - rhomb.
90°90°90°90°90°

Quasihombateded Hypercube qrbCn   (up)
Dimension3D4D5D6DnD
Dynkin diagram
x3o4/3x
o3x3o4/3x
o3o3x3o4/3x
o3o3o3x3o4/3x
o3o...o3x3o4/3x
Acronym
querco
qrit
quarn
qrax
quasirhomb. n-hypercube
Vertex Count2496320960n(n-1) 2n-1
Facet Count
rect. simpl.
8trig16oct32rap64rix2n
Facet Count
prism
12square32trip80tepe192penpn 2n-1
Facet Count
qu.rh. hyp.cube
6square8querco10qrit12quarn2n
Circumradiussqrt[5-2 sqrt(2)]/2
0.736813
sqrt[2-sqrt(2)]
0.765367
[3-sqrt(2)]/2
0.792893
sqrt[(7-4 sqrt(2))/2]
0.819496
sqrt[3n-4-2(n-2) sqrt(2)]/2
Inradius wrt.
rect. simp. facets
[3-sqrt(2)]/sqrt(12)
0.457777
1-1/sqrt(2)
0.292893
sqrt[(43-30 sqrt(2))/20]
0.169351
sqrt[(17-12 sqrt(2))/6]
0.0700443
sqrt[(3n2-8n+8-2n(n-2) sqrt(2))/4n]
Inradius wrt.
prism facets
(sqrt(2)-1)/2
0.207107
sqrt[(17-12 sqrt(2))/12]
0.0495288
sqrt[(17-12 sqrt(2))/8]
0.0606602
sqrt[(57-40 sqrt(2))/20]
0.146877
sqrt[(3n2-10n+9-2(n-1)(n-2) sqrt(2))/(4(n-1))]
Inradius wrt.
qrh. hyp.cub. facets
(sqrt(2)-1)/2
0.207107
(sqrt(2)-1)/2
0.207107
(sqrt(2)-1)/2
0.207107
(sqrt(2)-1)/2
0.207107
(sqrt(2)-1)/2
0.207107
Volume[10 sqrt(2)-12]/3
0.714045
[32 sqrt(2)-45]/3
0.0849447
[1205-843 sqrt(2)]/30
0.427266
[3141 sqrt(2)-4426]/45
0.356551
?
Surface18+2 sqrt(3)
21.464102
????
Dihedral angles
rect. - prism
arccos[sqrt(2/3)]
35.264390°
30°arccos[2/sqrt(5)]
26.565051°
arccos[sqrt(5/6)]
24.094843°
arccos[sqrt((n-1)/n)]
Dihedral angles
rect. - qu.rh.
60°arccos[1/sqrt(5)]
63.434949°
arccos[1/sqrt(6)]
65.905157°
arccos[1/sqrt(n)]
Dihedral angles
prism - qu.rh.
45°arccos[1/sqrt(3)]
54.735610°
60°arccos[1/sqrt(5)]
63.434949°
arccos[1/sqrt(n-1)]
Dihedral angles
qu.rh. - qu.rh.
90°90°90°90°
Dimension7D8D9D10DnD
Dynkin diagram
o3o3o3o3x3o4/3x
o3o3o3o3o3x3o4/3x
o3o3o3o3o3o3x3o4/3x
o3o3o3o3o3o3o3x3o4/3x
o3o...o3x3o4/3x
Acronym
quersa
qro
?
?
quasirhomb. n-hypercube
Vertex Count268871681843246080n(n-1) 2n-1
Facet Count
rect. simpl.
128ril256roc512rene1024reday2n
Facet Count
prism
448hixip1024hopip2304ocpe5120enepn 2n-1
Facet Count
qu.rh. hyp.cube
14qrax16quersa18qro20?2n
Circumradiussqrt[17-10 sqrt(2)]/2
0.845261
sqrt[5-3 sqrt(2)]
0.870264
sqrt[23-14 sqrt(2)]/2
0.894568
sqrt[(13-8 sqrt(2))/2]
0.918230
sqrt[3n-4-2(n-2) sqrt(2)]/2
Inradius wrt.
rect. simp. facets
sqrt[(99-70 sqrt(2))/28]
0.0134306
sqrt[17-12 sqrt(2)]/2
0.0857864
sqrt[179-126 sqrt(2)]/6
0.149916
sqrt[(57-40 sqrt(2))/10]
0.207716
sqrt[(3n2-8n+8-2n(n-2) sqrt(2))/4n]
Inradius wrt.
prism facets
sqrt[(43-30 sqrt(2))/12]
0.218631
sqrt[(121-84 sqrt(2))/28]
0.280692
sqrt[81-56 sqrt(2)]/4
0.335786
sqrt[209-144 sqrt(2)]/6
0.385618
sqrt[(3n2-10n+9-2(n-1)(n-2) sqrt(2))/(4(n-1))]
Inradius wrt.
qrh. hyp.cub. facets
(sqrt(2)-1)/2
0.207107
(sqrt(2)-1)/2
0.207107
(sqrt(2)-1)/2
0.207107
(sqrt(2)-1)/2
0.207107
(sqrt(2)-1)/2
0.207107
Volume?????
Surface?????
Dihedral angles
rect. - prism
arccos[sqrt(6/7)]
22.207654°
arccos[sqrt(7/8)]
20.704811°
arccos[sqrt(8/9)]
19.471221°
arccos[sqrt(9/10)]
18.434949°
arccos[sqrt((n-1)/n)]
Dihedral angles
rect. - qu.rh.
arccos[1/sqrt(7)]
67.792346°
arccos[1/sqrt(8)]
69.295189°
arccos[1/3]
70.528779°
arccos[1/sqrt(10)]
84.260830°
arccos[1/sqrt(n)]
Dihedral angles
prism - qu.rh.
arccos[1/sqrt(6)]
65.905157°
arccos[1/sqrt(7)]
67.792346°
arccos[1/sqrt(8)]
69.295189°
arccos[1/3]
70.528779°
arccos[1/sqrt(n-1)]
Dihedral angles
qu.rh. - qu.rh.
90°90°90°90°90°

Maximal Expanded Hypercube eCn   (up)

Within these polytopes eCn generally can be described as the tristratic lace tower oftheregular hypercube Cn-1 atop the maximal expanded hypercube eCn-1 atop a further maximal expanded hypercube eCn-1 atop the regular hypercube Cn-1.Thence, by means of thelace tower notation,eCn = x3o...o3o4x (n nodes) can be described as well asoxxo3oooo...oooo3oooo4xxxx&#xt (n-1 node positions).

Dimension3D4D5D6DnD
Dynkin diagram
x3o4x
x3o3o4x
x3o3o3o4x
x3o3o3o3o4x
x3o...o3o4x
Acronym
sirco
sidpith
scant
stoxog
max-exp. n-hypercube
Vertex Count2464160384n 2n
Facet Count
simplex
8trig16tet32pen64hix2n
n! 2n-0/[(n-0)!0!]
Facet Count
prism I
12square32trip80tepe192penpn 2n-1
n! 2n-1/[(n-1)!1!]
Facet Count
duoprism I
80tisdip240squatetn(n-1) 2n-3
n! 2n-2/[(n-2)!2!]
Facet Count
duoprism II
160tracuben(n-1)(n-2) 2n-4/3
n! 2n-3/[(n-3)!3!]
Facet Count
prism II
24cube40tes60pent2n(n-1)
n! 22/[2!(n-2)!]
Facet Count
hypercube
6square8cube10tes12pent2n
n! 21/[1!(n-1)!]
Circumradiussqrt[5+2 sqrt(2)]/2
1.398966
sqrt[(3+sqrt(2))/2]
1.485633
sqrt[7+2 sqrt(2)]/2
1.567516
sqrt[2+1/sqrt(2)]
1.645329
sqrt[(n+2)+sqrt(8)]/2
Inradius wrt.
simplex facets
[3+sqrt(2)]/sqrt(12)
1.274274
[1+2 sqrt(2)]/sqrt(8)
1.353553
[5+sqrt(2)]/sqrt(20)
1.434262
[1+3 sqrt(2)]/sqrt(12)
1.513420
[n+sqrt(2)]/sqrt(4n)
Inradius wrt.
prism I facets
(1+sqrt(2))/2
1.207107
[3+sqrt(2)]/sqrt(12)
1.274274
[1+2 sqrt(2)]/sqrt(8)
1.353553
[5+sqrt(2)]/sqrt(20)
1.434262
[(n-1)+sqrt(2)]/sqrt[4(n-1)]
Inradius wrt.
d.pr. I fac.
[3+sqrt(2)]/sqrt(12)
1.274274
[1+2 sqrt(2)]/sqrt(8)
1.353553
[(n-2)+sqrt(2)]/sqrt[4(n-2)]
Inradius wrt.
d.pr. II fac.
[3+sqrt(2)]/sqrt(12)
1.274274
[(n-3)+sqrt(2)]/sqrt[4(n-3)]
Inradius wrt.
prism II facets
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
Inradius wrt.
hyp.cube fac.
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
Volume[12+10 sqrt(2)]/3
8.714045
[43+32 sqrt(2)]/6
14.709139
[355+251 sqrt(2)]/30
23.665587
[833+579 sqrt(2)]/45
36.707326
?
Surface18+2 sqrt(3)
21.464102
[96+4 sqrt(2)+24 sqrt(3)]/3
47.742025
[150+20 sqrt(2)+60 sqrt(3)+sqrt(5)]/3
94.814463
[1080+300 sqrt(2)+601 sqrt(3)+30 sqrt(5)]/15
174.153910
?
Dihedral angles
simplex - (next)
arccos[-sqrt(2/3)]
144.735610°
150°arccos[-2/sqrt(5)]
153.434949°
arccos[-sqrt(5/6)]
155.905157°
arccos[-sqrt((n-1)/n)]
Dihedral angles
prism I - (next)
135°arccos[-sqrt(2/3)]
144.735610°
150°arccos[-2/sqrt(5)]
153.434949°
arccos[-sqrt((n-2)/(n-1))]
Dihedral angles
d.pr. I - (next)
arccos[-sqrt(2/3)]
144.735610°
150°arccos[-sqrt((n-3)/(n-2))]
Dihedral angles
d.pr. II - (next)
arccos[-sqrt(2/3)]
144.735610°
arccos[-sqrt((n-4)/(n-3))]
Dihedral angles
prism II - hyp.cube
135°135°135°135°
Dimension7D8D9D10DnD
Dynkin diagram
x3o3o3o3o3o4x
x3o3o3o3o3o3o4x
x3o3o3o3o3o3o3o4x
x3o3o3o3o3o3o3o3o4x
x3o...o3o4x
Acronym
suposaz
saxoke
?
?
max-exp. n-hypercube
Vertex Count8962048460810240n 2n
Facet Count
simplex
128hop256oca512ene1024day2n
n! 2n-0/[(n-0)!0!]
Facet Count
prism I
448hixip1024hopip2304ocpe5120enepn 2n-1
n! 2n-1/[(n-1)!1!]
Facet Count
duoprism I
672squapen1792squahix4608squahop11520squocn(n-1) 2n-3
n! 2n-2/[(n-2)!2!]
Facet Count
duoprism II
560tetcube1792cubpen5376cubhix15360cubhopn(n-1)(n-2) 2n-4/3
n! 2n-3/[(n-3)!3!]
Facet Count
duoprism III
280tratess1120tettes4032pentes13440teshixn! 2n-4/[(n-4)!4!]
Facet Count
duoprism IV
448trapent2016tetpent8064penpentn! 2n-5/[(n-5)!5!]
Facet Count
duoprism V
672triax3360tetaxn! 2n-6/[(n-6)!6!]
Facet Count
duoprism VI
960tetaxn! 2n-7/[(n-7)!7!]
Facet Count
prism II
84ax112hept144octo180enne2n(n-1)
n! 22/[2!(n-2)!]
Facet Count
hypercube
14ax16hept18octo20enne2n
n! 21/[1!(n-1)!]
Circumradiussqrt[9+2 sqrt(2)]/2
1.719624
sqrt[(5+sqrt(2))/2]
1.790840
sqrt[11+2 sqrt(2)]/2
1.859330
sqrt[(6+sqrt(2))/2]
1.925385
sqrt[(n+2)+sqrt(8)]/2
Inradius wrt.
simplex facets
[7+sqrt(2)]/sqrt(28)
1.590137
[1+4 sqrt(2)]/4
1.664214
[9+sqrt(2)]/6
1.735702
[1+5 sqrt(2)]/sqrt(20)
1.804746
[n+sqrt(2)]/sqrt(4n)
Inradius wrt.
prism I facets
[1+3 sqrt(2)]/sqrt(12)
1.513420
[7+sqrt(2)]/sqrt(28)
1.590137
[1+4 sqrt(2)]/4
1.664214
[9+sqrt(2)]/6
1.735702
[(n-1)+sqrt(2)]/sqrt[4(n-1)]
Inradius wrt.
d.pr. I fac.
[5+sqrt(2)]/sqrt(20)
1.434262
[1+3 sqrt(2)]/sqrt(12)
1.513420
[7+sqrt(2)]/sqrt(28)
1.590137
[1+4 sqrt(2)]/4
1.664214
[(n-2)+sqrt(2)]/sqrt[4(n-2)]
Inradius wrt.
d.pr. II fac.
[1+2 sqrt(2)]/sqrt(8)
1.353553
[5+sqrt(2)]/sqrt(20)
1.434262
[1+3 sqrt(2)]/sqrt(12)
1.513420
[7+sqrt(2)]/sqrt(28)
1.590137
[(n-3)+sqrt(2)]/sqrt[4(n-3)]
Inradius wrt.
d.pr. III fac.
[3+sqrt(2)]/sqrt(12)
1.274274
[1+2 sqrt(2)]/sqrt(8)
1.353553
[5+sqrt(2)]/sqrt(20)
1.434262
[1+3 sqrt(2)]/sqrt(12)
1.513420
[(n-4)+sqrt(2)]/sqrt[4(n-4)]
Inradius wrt.
d.pr. IV fac.
[3+sqrt(2)]/sqrt(12)
1.274274
[1+2 sqrt(2)]/sqrt(8)
1.353553
[5+sqrt(2)]/sqrt(20)
1.434262
[(n-5)+sqrt(2)]/sqrt[4(n-5)]
Inradius wrt.
d.pr. V fac.
[3+sqrt(2)]/sqrt(12)
1.274274
[1+2 sqrt(2)]/sqrt(8)
1.353553
[(n-6)+sqrt(2)]/sqrt[4(n-6)]
Inradius wrt.
d.pr. VI fac.
[3+sqrt(2)]/sqrt(12)
1.274274
[(n-7)+sqrt(2)]/sqrt[4(n-7)]
Inradius wrt.
prism II facets
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
Inradius wrt.
hyp.cube fac.
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
Volume[8792+6101 sqrt(2)]/315
55.301959
????
Surface?????
Dihedral angles
simplex - (next)
arccos[-sqrt(6/7)]
157.792346°
arccos[-sqrt(7/8)]
159.295189°
arccos[-sqrt(8)/3]
160.528779°
arccos[-3/sqrt(10)]
161.565051°
arccos[-sqrt((n-1)/n)]
Dihedral angles
prism - (next)
arccos[-sqrt(5/6)]
155.905157°
arccos[-sqrt(6/7)]
157.792346°
arccos[-sqrt(7/8)]
159.295189°
arccos[-sqrt(8)/3]
160.528779°
arccos[-sqrt((n-2)/(n-1))]
Dihedral angles
d.pr. I - (next)
arccos[-2/sqrt(5)]
153.434949°
arccos[-sqrt(5/6)]
155.905157°
arccos[-sqrt(6/7)]
157.792346°
arccos[-sqrt(7/8)]
159.295189°
arccos[-sqrt((n-3)/(n-2))]
Dihedral angles
d.pr. II - (next)
150°arccos[-2/sqrt(5)]
153.434949°
arccos[-sqrt(5/6)]
155.905157°
arccos[-sqrt(6/7)]
157.792346°
arccos[-sqrt((n-4)/(n-3))]
Dihedral angles
d.pr. III - (next)
arccos[-sqrt(2/3)]
144.735610°
150°arccos[-2/sqrt(5)]
153.434949°
arccos[-sqrt(5/6)]
155.905157°
arccos[-sqrt((n-5)/(n-4))]
Dihedral angles
d.pr. IV - (next)
arccos[-sqrt(2/3)]
144.735610°
150°arccos[-2/sqrt(5)]
153.434949°
arccos[-sqrt((n-6)/(n-5))]
Dihedral angles
d.pr. V - (next)
arccos[-sqrt(2/3)]
144.735610°
150°arccos[-sqrt((n-7)/(n-6))]
Dihedral angles
d.pr. VI - (next)
arccos[-sqrt(2/3)]
144.735610°
arccos[-sqrt((n-8)/(n-7))]
Dihedral angles
prism II - hyp.cube
135°135°135°135°135°


Quasiexpanded Hypercube qeCn   (up)

These non-convex polytopes qeCn generally are nothing but the conjugates of themaximal expanded hypercube eCn.

Note that the pattern of retrogradeness, which is required for the correct conjugacy of thevolume terms, has an interruption between the fourth and fifth dimension.This simply is because elsewise the volume values themselves would become negative, that is the choice of retrogradenessesjust got reversed thereafter.

Dimension3D4D5D6DnD
Dynkin diagram
x3o4/3x
x3o3o4/3x
x3o3o3o4/3x
x3o3o3o3o4/3x
x3o...o3o4/3x
Acronym
querco
quidpith
quacant
quitoxog
quasiexp. n-hypercube
Vertex Count2464160384n 2n
Facet Count
simplex
8trig16tet32pen64hix2n
n! 2n-0/[(n-0)!0!]
Facet Count
prism I
12square32trip80tepe192penpn 2n-1
n! 2n-1/[(n-1)!1!]
Facet Count
duoprism I
80tisdip240squatetn(n-1) 2n-3
n! 2n-2/[(n-2)!2!]
Facet Count
duoprism II
160tracuben(n-1)(n-2) 2n-4/3
n! 2n-3/[(n-3)!3!]
Facet Count
prism II
24cube40tes60pent2n(n-1)
n! 22/[2!(n-2)!]
Facet Count
hypercube
6square8cube10tes12pent2n
n! 21/[1!(n-1)!]
Circumradiussqrt[5-2 sqrt(2)]/2
0.736813
sqrt[(3-sqrt(2))/2]
0.890446
sqrt[7-2 sqrt(2)]/2
1.021221
sqrt[2-1/sqrt(2)]
1.137055
sqrt[(n+2)-sqrt(8)]/2
Inradius wrt.
simplex facets
-[3-sqrt(2)]/sqrt(12)
-0.457777
[2 sqrt(2)-1]/sqrt(8)
0.646447
[5-sqrt(2)]/sqrt(20)
0.801806
-[3 sqrt(2)-1]/sqrt(12)
-0.936070
[n-sqrt(2)]/sqrt(4n)
Inradius wrt.
prism I facets
(sqrt(2)-1)/2
0.207107
-[3-sqrt(2)]/sqrt(12)
-0.457777
-[2 sqrt(2)-1]/sqrt(8)
-0.646447
[5-sqrt(2)]/sqrt(20)
0.801806
[(n-1)-sqrt(2)]/sqrt[4(n-1)]
Inradius wrt.
d.pr. I fac.
[3-sqrt(2)]/sqrt(12)
0.457777
-[2 sqrt(2)-1]/sqrt(8)
-0.646447
[(n-2)-sqrt(2)]/sqrt[4(n-2)]
Inradius wrt.
d.pr. II fac.
[3-sqrt(2)]/sqrt(12)
0.457777
[(n-3)-sqrt(2)]/sqrt[4(n-3)]
Inradius wrt.
prism II facets
(sqrt(2)-1)/2
0.207107
-(sqrt(2)-1)/2
-0.207107
-(sqrt(2)-1)/2
-0.207107
+/− (sqrt(2)-1)/2
0.207107
Inradius wrt.
hyp.cube fac.
(sqrt(2)-1)/2
0.207107
(sqrt(2)-1)/2
0.207107
-(sqrt(2)-1)/2
-0.207107
-(sqrt(2)-1)/2
-0.207107
+/− (sqrt(2)-1)/2
0.207107
Volume[10 sqrt(2)-12]/3
0.392837
[32 sqrt(2)-43]/6
0.375806
[355-251 sqrt(2)]/30
0.0010799
[833-579 sqrt(2)]/45
0.314897
?
Surface18+2 sqrt(3)
21.464102
[96+4 sqrt(2)+24 sqrt(3)]/3
47.742025
[150+20 sqrt(2)+60 sqrt(3)+sqrt(5)]/3
94.814463
[1080+300 sqrt(2)+601 sqrt(3)+30 sqrt(5)]/15
174.153910
?
Dihedral angles
simplex - (next)
arccos[sqrt(2/3)]
35.264390°
30°arccos[2/sqrt(5)]
26.565051°
arccos[sqrt(5/6)]
24.094843°
arccos[sqrt((n-1)/n)]
Dihedral angles
prism I - (next)
45°arccos[sqrt(2/3)]
35.264390°
30°arccos[2/sqrt(5)]
26.565051°
arccos[sqrt((n-2)/(n-1))]
Dihedral angles
d.pr. I - (next)
arccos[sqrt(2/3)]
35.264390°
30°arccos[sqrt((n-3)/(n-2))]
Dihedral angles
d.pr. II - (next)
arccos[sqrt(2/3)]
35.264390°
arccos[sqrt((n-4)/(n-3))]
Dihedral angles
prism II - hyp.cube
45°45°45°45°
Dimension7D8D9D10DnD
Dynkin diagram
x3o3o3o3o3o4/3x
x3o3o3o3o3o3o4/3x
x3o3o3o3o3o3o3o4/3x
x3o3o3o3o3o3o3o3o4/3x
x3o...o3o4/3x
Acronym
quiposaz
quaxoke
?
?
quasiexp. n-hypercube
Vertex Count8962048460810240n 2n
Facet Count
simplex
128hop256oca512ene1024day2n
n! 2n-0/[(n-0)!0!]
Facet Count
prism I
448hixip1024hopip2304ocpe5120enepn 2n-1
n! 2n-1/[(n-1)!1!]
Facet Count
duoprism I
672squapen1792squahix4608squahop11520squocn(n-1) 2n-3
n! 2n-2/[(n-2)!2!]
Facet Count
duoprism II
560tetcube1792cubpen5376cubhix15360cubhopn(n-1)(n-2) 2n-4/3
n! 2n-3/[(n-3)!3!]
Facet Count
duoprism III
280tratess1120tettes4032pentes13440teshixn! 2n-4/[(n-4)!4!]
Facet Count
duoprism IV
448trapent2016tetpent8064penpentn! 2n-5/[(n-5)!5!]
Facet Count
duoprism V
672triax3360tetaxn! 2n-6/[(n-6)!6!]
Facet Count
duoprism VI
960tetaxn! 2n-7/[(n-7)!7!]
Facet Count
prism II
84ax112hept144octo180enne2n(n-1)
n! 22/[2!(n-2)!]
Facet Count
hypercube
14ax16hept18octo20enne2n
n! 21/[1!(n-1)!]
Circumradiussqrt[9-2 sqrt(2)]/2
1.242133
sqrt[(5-sqrt(2))/2]
1.338990
sqrt[11-2 sqrt(2)]/2
1.429298
sqrt[(6-sqrt(2))/2]
1.514230
sqrt[(n+2)-sqrt(8)]/2
Inradius wrt.
simplex facets
[7-sqrt(2)]/sqrt(28)
1.055614
-[4 sqrt(2)-1]/4
-1.164214
[9-sqrt(2)]/6
1.264298
-[5 sqrt(2)-1]/sqrt(20)
-1.357532
[n-sqrt(2)]/sqrt(4n)
Inradius wrt.
prism I facets
-[3 sqrt(2)-1]/sqrt(12)
-0.936070
[7-sqrt(2)]/sqrt(28)
1.055614
-[4 sqrt(2)-1]/4
-1.164214
[9-sqrt(2)]/6
1.264298
[(n-1)-sqrt(2)]/sqrt[4(n-1)]
Inradius wrt.
d.pr. I fac.
[5-sqrt(2)]/sqrt(20)
0.801806
-[3 sqrt(2)-1]/sqrt(12)
-0.936070
[7-sqrt(2)]/sqrt(28)
1.055614
-[4 sqrt(2)-1]/4
-1.164214
[(n-2)-sqrt(2)]/sqrt[4(n-2)]
Inradius wrt.
d.pr. II fac.
-[2 sqrt(2)-1]/sqrt(8)
-0.646447
[5-sqrt(2)]/sqrt(20)
0.801806
-[3 sqrt(2)-1]/sqrt(12)
-0.936070
[7-sqrt(2)]/sqrt(28)
1.055614
[(n-3)-sqrt(2)]/sqrt[4(n-3)]
Inradius wrt.
d.pr. III fac.
[3-sqrt(2)]/sqrt(12)
0.457777
-[2 sqrt(2)-1]/sqrt(8)
-0.646447
[5-sqrt(2)]/sqrt(20)
0.801806
-[3 sqrt(2)-1]/sqrt(12)
-0.936070
[(n-4)-sqrt(2)]/sqrt[4(n-4)]
Inradius wrt.
d.pr. IV fac.
[3-sqrt(2)]/sqrt(12)
0.457777
-[2 sqrt(2)-1]/sqrt(8)
-0.646447
[5-sqrt(2)]/sqrt(20)
0.801806
[(n-5)-sqrt(2)]/sqrt[4(n-5)]
Inradius wrt.
d.pr. V fac.
[3-sqrt(2)]/sqrt(12)
0.457777
-[2 sqrt(2)-1]/sqrt(8)
-0.646447
[(n-6)-sqrt(2)]/sqrt[4(n-6)]
Inradius wrt.
d.pr. VI fac.
[3-sqrt(2)]/sqrt(12)
0.457777
[(n-7)-sqrt(2)]/sqrt[4(n-7)]
Inradius wrt.
prism II facets
-(sqrt(2)-1)/2
-0.207107
-(sqrt(2)-1)/2
-0.207107
-(sqrt(2)-1)/2
-0.207107
-(sqrt(2)-1)/2
-0.207107
-(sqrt(2)-1)/2
-0.207107
Inradius wrt.
hyp.cube fac.
-(sqrt(2)-1)/2
-0.207107
-(sqrt(2)-1)/2
-0.207107
-(sqrt(2)-1)/2
-0.207107
-(sqrt(2)-1)/2
-0.207107
-(sqrt(2)-1)/2
-0.207107
Volume[8792-6101 sqrt(2)]/315
0.520264
????
Surface?????
Dihedral angles
simplex - (next)
arccos[sqrt(6/7)]
22.207654°
arccos[sqrt(7/8)]
20.704811°
arccos[sqrt(8)/3]
19.471221°
arccos[3/sqrt(10)]
18.434949°
arccos[sqrt((n-1)/n)]
Dihedral angles
prism - (next)
arccos[sqrt(5/6)]
24.094843°
arccos[sqrt(6/7)]
22.207654°
arccos[sqrt(7/8)]
20.704811°
arccos[sqrt(8)/3]
19.471221°
arccos[sqrt((n-2)/(n-1))]
Dihedral angles
d.pr. I - (next)
arccos[2/sqrt(5)]
26.565051°
arccos[sqrt(5/6)]
24.094843°
arccos[sqrt(6/7)]
22.207654°
arccos[sqrt(7/8)]
20.704811°
arccos[sqrt((n-3)/(n-2))]
Dihedral angles
d.pr. II - (next)
30°arccos[2/sqrt(5)]
26.565051°
arccos[sqrt(5/6)]
24.094843°
arccos[sqrt(6/7)]
22.207654°
arccos[sqrt((n-4)/(n-3))]
Dihedral angles
d.pr. III - (next)
arccos[sqrt(2/3)]
35.264390°
30°arccos[2/sqrt(5)]
26.565051°
arccos[sqrt(5/6)]
24.094843°
arccos[sqrt((n-5)/(n-4))]
Dihedral angles
d.pr. IV - (next)
arccos[sqrt(2/3)]
35.264390°
30°arccos[2/sqrt(5)]
26.565051°
arccos[sqrt((n-6)/(n-5))]
Dihedral angles
d.pr. V - (next)
arccos[sqrt(2/3)]
35.264390°
30°arccos[sqrt((n-7)/(n-6))]
Dihedral angles
d.pr. VI - (next)
arccos[sqrt(2/3)]
35.264390°
arccos[sqrt((n-8)/(n-7))]
Dihedral angles
prism II - hyp.cube
45°45°45°45°45°

Retroexpanded Hypercube reCn   (up)

These non-convex polytopes reCn (a.k.a. socco series) generally are facetings of themaximal expanded hypercube eCn.

All facets within each member of this series here are obviously prograde, except for the simplices. Those however alternate within their retrogradeness wrt. the dimensional n quite similarily as they did for thefacetorectified hypercubes frCn.

Dimension3D4D5D6DnD
Dynkin diagram
o3x4x4/3*a
o3x4x4/3*a3o
o3x4x4/3*a3o3o
o3x4x4/3*a3o3o3o
o3x4x4/3*a3o...o3o
Acronym
socco
steth
sinnont
soxaxog
retroexp. hypercube
Vertex Count2464160384n 2n
Facet Count
simplex
8trig16tet32pen64hix2n
Facet Count
hypercube
6square8cube10tes12pent2n
Facet Count
soc. ser. mem.
6oc8socco10steth12sinnont2n
Circumradiussqrt[5+2 sqrt(2)]/2
1.398966
sqrt[(3+sqrt(2))/2]
1.485633
sqrt[7+2 sqrt(2)]/2
1.567516
sqrt[2+1/sqrt(2)]
1.645329
sqrt[(n+2)+sqrt(8)]/2
Inradius wrt.
simplex facets
-[3+sqrt(2)]/sqrt(12)
-1.274274
[1+2 sqrt(2)]/sqrt(8)
1.353553
-[5+sqrt(2)]/sqrt(20)
-1.434262
[1+3 sqrt(2)]/sqrt(12)
1.513420
+/− [n+sqrt(2)]/sqrt(4n)
Inradius wrt.
hyp.cube fac.
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
Inradius wrt.
soc. ser. mem.
1/2
0.5
1/2
0.5
1/2
0.5
1/2
0.5
1/2
0.5
Volume[6+8 sqrt(2)]/3
5.771236
[19+24 sqrt(2)]/6
8.823521
[120+149 sqrt(2)]/30
11.023927
[451+540 sqrt(2)]/90
13.496392
?
Surface18+12 sqrt(2)+2 sqrt(3)
38.434664
[72+68 sqrt(2)]/3
56.055507
[125+120 sqrt(2)+sqrt(5)]/3
98.980565
[900+894 sqrt(2)+2 sqrt(3)]/15
144.518068
?
Dihedral angles
simplex - soc.s.m.
arccos[1/sqrt(3)]
54.735610°
60°arccos[1/sqrt(5)]
63.434949°
arccos[1/sqrt(6)]
65.905157°
arccos[1/sqrt(n)]
Dihedral angles
hyp.cub. - soc.s.m.
90°90°90°90°90°
Dihedral angles
soc.s.m. - soc.s.m.
90°90°90°90°
Dimension7D8D9D10DnD
Dynkin diagram
o3x4x4/3*a3o3o3o3o
o3x4x4/3*a3o3o3o3o3o
o3x4x4/3*a3o3o3o3o3o3o
o3x4x4/3*a3o3o3o3o3o3o3o
o3x4x4/3*a3o...o3o
Acronym
sososaz
sook
?
?
retroexp. hypercube
Vertex Count8962048460810240n 2n
Facet Count
simplex
128hop256oca512ene1024day2n
Facet Count
hypercube
14ax16hept18octo20enne2n
Facet Count
soc. ser. mem.
14soxaxog16sososaz18sook20?2n
Circumradiussqrt[9+2 sqrt(2)]/2
1.719624
sqrt[(5+sqrt(2))/2]
1.790840
sqrt[11+2 sqrt(2)]/2
1.859330
sqrt[(6+sqrt(2))/2]
1.925385
sqrt[(n+2)+sqrt(8)]/2
Inradius wrt.
simplex facets
-[7+sqrt(2)]/sqrt(28)
-1.590137
[1+4 sqrt(2)]/4
1.664214
-[9+sqrt(2)]/6
-1.735702
[1+5 sqrt(2)]/sqrt(20)
1.804746
+/− [n+sqrt(2)]/sqrt(4n)
Inradius wrt.
hyp.cube fac.
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
(1+sqrt(2))/2
1.207107
Inradius wrt.
soc. ser. mem.
1/2
0.5
1/2
0.5
1/2
0.5
1/2
0.5
1/2
0.5
Volume?????
Surface?????
Dihedral angles
simplex - soc.s.m.
arccos[1/sqrt(7)]
67.792346°
arccos[1/sqrt(8)]
69.295189°
arccos(1/3)
70.528779°
arccos[1/sqrt(10)]
71.565051°
arccos[1/sqrt(n)]
Dihedral angles
hyp.cub. - soc.s.m.
90°90°90°90°90°
Dihedral angles
soc.s.m. - soc.s.m.
90°90°90°90°90°

Quasiretroexpanded Hypercube qreCn   (up)

These non-convex polytopes qreCn (a.k.a. gocco series) generally are memberwise conjugates of theretroexpanded hypercube reCn.Thence they are related to thequasiexpanded hypercube qeCnin a very similar way as the former had been to the non-quasi variants,i.e. themaximal expanded hypercubes eCn.In fact the qeCn are facetings of those.

Moreover it happens that all facets within each member of this series are fully prograde, without any exception. In fact their vertex figure always is convex. Thence those also are said to belocally convex.

Dimension3D4D5D6DnD
Dynkin diagram
o3x4/3x4*a
o3x4/3x4*a3o
o3x4/3x4*a3o3o
o3x4/x43*a3o3o3o
o3x4/3x4*a3o...o3o
Acronym
gocco
gittith
ginnont
goxaxog
quasiretroexp. hyp.cube
Vertex Count2464160384n 2n
Facet Count
simplex
8trig16tet32pen64hix2n
Facet Count
hypercube
6square8cube10tes12pent2n
Facet Count
goc. ser. mem.
6og8gocco10gittith12ginnont2n
Circumradiussqrt[5-2 sqrt(2)]/2
0.736813
sqrt[(3-sqrt(2))/2]
0.890446
sqrt[7-2 sqrt(2)]/2
1.021221
sqrt[(4-sqrt(2))/2]
1.137055
sqrt[(n+2)-sqrt(8)]/2
Inradius wrt.
simplex facets
[3-sqrt(2)]/sqrt(12)
0.457777
[2 sqrt(2)-1]/sqrt(8)
0.646447
[5-sqrt(2)]/sqrt(20)
0.801806
[3 sqrt(2)-1]/sqrt(12)
0.936070
[n-sqrt(2)]/sqrt(4n)
Inradius wrt.
hyp.cube fac.
(sqrt(2)-1)/2
0.207107
(sqrt(2)-1)/2
0.207107
(sqrt(2)-1)/2
0.207107
(sqrt(2)-1)/2
0.207107
(sqrt(2)-1)/2
0.207107
Inradius wrt.
goc. ser. mem.
1/2
0.5
1/2
0.5
1/2
0.5
1/2
0.5
1/2
0.5
Volume[8 sqrt(2)-6]/3
1.771236
[24 sqrt(2)-19]/6
2.490188
[149 sqrt(2)-120]/30
3.023927
[540 sqrt(2)-451]/90
3.474170
?
Surface-6+12 sqrt(2)+2 sqrt(3)
14.434664
[68 sqrt(2)-24]/3
24.055507
[-65+120 sqrt(2)+sqrt(5)]/3
35.647232
[-540+894 sqrt(2)+2 sqrt(3)]/15
48.518068
?
Dihedral angles
simplex - goc.s.m.
arccos[-1/sqrt(3)]
125.264390°
120°arccos[-1/sqrt(5)]
116.565051°
arccos[-1/sqrt(6)]
114.094843°
arccos[-1/sqrt(n)]
Dihedral angles
hyp.cub. - goc.s.m.
90°90°90°90°90°
Dihedral angles
goc.s.m. - goc.s.m.
90°90°90°90°
Dimension7D8D9D10DnD
Dynkin diagram
o3x4/3x4*a3o3o3o3o
o3x4/3x4*a3o3o3o3o3o
o3x4/3x4*a3o3o3o3o3o3o
o3x4/3x4*a3o3o3o3o3o3o3o
o3x4/3x4*a3o...o3o
Acronym
gososaz
gook
?
?
quasiretroexp. hyp.cube
Vertex Count8962048460810240n 2n
Facet Count
simplex
128hop256oca512ene1024day2n
Facet Count
hypercube
14ax16hept18octo20enne2n
Facet Count
goc. ser. mem.
14goxaxog16gososaz18gook20?2n
Circumradiussqrt[9-2 sqrt(2)]/2
1.242133
sqrt[(5-sqrt(2))/2]
1.338990
sqrt[11-2 sqrt(2)]/2
1.429298
sqrt[(6-sqrt(2))/2]
1.514230
sqrt[(n+2)-sqrt(8)]/2
Inradius wrt.
simplex facets
[7-sqrt(2)]/sqrt(28)
1.055614
[4 sqrt(2)-1]/4
1.164214
[9-sqrt(2)]/6
1.264298
[5 sqrt(2)-1]/sqrt(20)
1.357532
[n-sqrt(2)]/sqrt(4n)
Inradius wrt.
hyp.cube fac.
(sqrt(2)-1)/2
0.207107
(sqrt(2)-1)/2
0.207107
(sqrt(2)-1)/2
0.207107
(sqrt(2)-1)/2
0.207107
(sqrt(2)-1)/2
0.207107
Inradius wrt.
goc. ser. mem.
1/2
0.5
1/2
0.5
1/2
0.5
1/2
0.5
1/2
0.5
Volume?????
Surface?????
Dihedral angles
simplex - goc.s.m.
arccos[-1/sqrt(7)]
112.207654°
arccos[-1/sqrt(8)]
110.704811°
arccos(-1/3)
109.471221°
arccos[-1/sqrt(10)]
108.434949°
arccos[-1/sqrt(n)]
Dihedral angles
hyp.cub. - goc.s.m.
90°90°90°90°90°
Dihedral angles
goc.s.m. - goc.s.m.
90°90°90°90°90°

Omnitruncated Hypercube otCn   (up)
Dimension2D3D4D5DnD
Dynkin diagram
x4x
x3x4x
x3x3x4x
x3x3x3x4x
x3x...x3x4x
Acronym
oc
girco
gidpith
gacnet
omnitr. n-hypercube
Vertex Count84838438402n n!
Facet Count
wrt. type 1
4line8hig16toe32gippid2n
Facet Count
wrt. type 2
4line12square32hip80tope2n-1 n
Facet Count
wrt. type 3
6oc24op80hodip2n-2 n!/[(n-2)! 2!]
Facet Count
wrt. type 4
8girco40gircope2n-3 n!/[(n-3)! 3!]
Facet Count
wrt. type 5
10gidpith2n-4 n!/[(n-4)! 4!]
Circumradiussqrt[(2+sqrt(2))/2]
1.306563
sqrt[13+6 sqrt(2)]/2
2.317611
sqrt[8+3 sqrt(2)]
3.498949
sqrt[65+20 sqrt(2)]/2
4.829189
sqrt[n(2n2-3n+4)/3 + n(n-1) sqrt(2)]/2
Inradius wrt.
facet type 1
(1+sqrt(2))/2
1.207107
sqrt[9+6 sqrt(2)]/2
2.090770
(2+3 sqrt(2))/2
3.121320
sqrt[45+20 sqrt(2)]/2
4.280312
sqrt[n(n2-2n+3)/2 + n(n-1) sqrt(2)]/2
Inradius wrt.
facet type 2
(1+sqrt(2))/2
1.207107
(3+sqrt(2))/2
2.207107
sqrt[27+12 sqrt(2)]/2
3.315515
sqrt[(27+10 sqrt(2))/2]
4.535534
sqrt[(n-1)(n2+2)/2 + n(n-1) sqrt(2)]/2
Inradius wrt.
facet type 3
(1+2 sqrt(2))/2
1.914214
(5+sqrt(2))/2
3.207107
sqrt[57+18 sqrt(2)]/2
4.540260
?
Inradius wrt.
facet type 4
sqrt[19+6 sqrt(2)]/2
2.621320
(7+sqrt(2))/2
4.207107
?
Inradius wrt.
facet type 5
sqrt[33+8 sqrt(2)]/2
3.328427
?
Volume2[1+sqrt(2)]
4.828427
2[11+7 sqrt(2)]
41.798990
2[131+92 sqrt(2)]
522.215295
2[2053+1564 sqrt(2)]
8529.660023
?
Surface812[2+sqrt(2)+sqrt(3)]
61.755172
???
Dihedral angles
types 1 - 2
135°arccos[-sqrt(2/3)]
144.735610°
150°arccos[-2/sqrt(5)]
153.434949°
arccos[-sqrt((n-1)/n)]
Dihedral angles
types 1 - 3
arccos[-1/sqrt(3)]
125.264390°
135°arccos[-sqrt(3/5)]
140.768480°
arccos[-sqrt((n-2)/n)]
Dihedral angles
types 1 - 4
120°arccos[-sqrt(2/5)]
129.231520°
arccos[-sqrt((n-3)/n)]
Dihedral angles
types 1 - 5
arccos[-1/sqrt(5)]
116.565051°
arccos[-sqrt((n-4)/n)]
Dihedral angles
types 2 - 3
135°arccos[-sqrt(2/3)]
144.735610°
150°arccos[-sqrt((n-2)/(n-1))]
Dihedral angles
types 2 - 4
arccos[-1/sqrt(3)]
125.264390°
135°arccos[-sqrt((n-3)/(n-1))]
Dihedral angles
types 2 - 5
120°arccos[-sqrt((n-4)/(n-1))]
Dihedral angles
types 3 - 4
135°arccos[-sqrt(2/3)]
144.735610°
arccos[-sqrt((n-3)/(n-2))]
Dihedral angles
types 3 - 5
arccos[-1/sqrt(3)]
125.264390°
arccos[-sqrt((n-4)/(n-2))]
Dihedral angles
types 4 - 5
135°arccos[-sqrt((n-4)/(n-3))]
Dimension6D7D8D9DnD
Dynkin diagram
x3x3x3x3x4x
x3x3x3x3x3x4x
x3x3x3x3x3x3x4x
x3x3x3x3x3x3x3x4x
x3x...x3x4x
Acronym
gotaxog
guposaz
gaxoke
?
omnitr. n-hypercube
Vertex Count46080645120103219201857945602n n!
Facet Count
wrt. type 1
64gocad128gotaf256guph512goxeb2n
Facet Count
wrt. type 2
192gippiddip448gocadip1024gotafip2304guphip2n-1 n
Facet Count
wrt. type 3
240otoe672ogippid1792ogocad4608ogotaf2n-2 n!/[(n-2)! 2!]
Facet Count
wrt. type 4
160hagirco560toegirco1792gircogippid5376gircogocad2n-3 n!/[(n-3)! 3!]
Facet Count
wrt. type 5
60gidpithip280hagidpith1120toegidpith4032gippidgidpith2n-4 n!/[(n-4)! 4!]
Facet Count
wrt. type 6
12gacnet84gacnetip448hagacnet2016toegacnet2n-5 n!/[(n-5)! 5!]
Facet Count
wrt. type 7
14gotaxog112gotaxogip672hagotaxog2n-6 n!/[(n-6)! 6!]
Facet Count
wrt. type 8
16guposaz144guposazip2n-7 n!/[(n-7)! 7!]
Facet Count
wrt. type 9
18gaxoke2n-8 n!/[(n-8)! 8!]
Circumradiussqrt[(58+15 sqrt(2))/2]
6.293378
sqrt[189+42 sqrt(2)]/2
7.880307
sqrt[72+14 sqrt(2)]
9.581179
sqrt[417+72 sqrt(2)]/2
11.388847
sqrt[n(2n2-3n+4)/3 + n(n-1) sqrt(2)]/2
Inradius wrt.
facet type 1
sqrt[81+30 sqrt(2)]/2
5.554872
sqrt[133+42 sqrt(2)]/2
6.935362
7+sqrt(2)
8.414214
sqrt[297+72 sqrt(2)]/2
9.985281
sqrt[n(n2-2n+3)/2 + n(n-1) sqrt(2)]/2
Inradius wrt.
facet type 2
sqrt[95+30 sqrt(2)]/2
5.861450
sqrt[153+42 sqrt(2)]/2
7.286923
sqrt[231+56 sqrt(2)]/2
8.806190
9+sqrt(2)
10.414214
sqrt[(n-1)(n2+2)/2 + n(n-1) sqrt(2)]/2
Inradius wrt.
facet type 3
sqrt[(51+14 sqrt(2))/2]
5.949747
sqrt[165+40 sqrt(2)]/2
7.442589
sqrt[249+54 sqrt(2)]/2
9.018974
??
Inradius wrt.
facet type 4
sqrt[99+24 sqrt(2)]/2
5.765005
sqrt[(83+18 sqrt(2))/2]
7.363961
sqrt[255+50 sqrt(2)]/2
9.023728
??
Inradius wrt.
facet type 5
(9+sqrt(2))/2
5.207107
sqrt[153+30 sqrt(2)]/2
6.989750
sqrt[(123+22 sqrt(2))/2]
8.778175
??
Inradius wrt.
facet type 6
sqrt[51+10 sqrt(2)]/2
4.035534
(11+sqrt(2))/2
6.207107
sqrt[219+36 sqrt(2)]/2
8.214495
??
Inradius wrt.
facet type 7
sqrt[73+12 sqrt(2)]/2
4.742641
(13+sqrt(2))/2
7.207107
??
Inradius wrt.
facet type 8
sqrt[99+14 sqrt(2)]/2
5.449747
??
Inradius wrt.
facet type 9
??
Volume?????
Surface?????
Dihedral angles
types 1 - 2
arccos[-sqrt(5/6)]
155.905157°
arccos[-sqrt(6/7)]
157.792346°
arccos[-sqrt(7/8)]
159.295189°
arccos[-sqrt(8)/3]
160.528779°
arccos[-sqrt((n-1)/n)]
Dihedral angles
types 1 - 3
arccos[-sqrt(2/3)]
144.735610°
arccos[-sqrt(5/7)]
147.688467°
150°arccos[-sqrt(7)/3]
151.874494°
arccos[-sqrt((n-2)/n)]
Dihedral angles
types 1 - 4
135°arccos[-sqrt(4/7)]
139.106605°
arccos[-sqrt(5/8)]
142.238756°
arccos[-sqrt(2/3)]
144.735610°
arccos[-sqrt((n-3)/n)]
Dihedral angles
types 1 - 5
arccos[-1/sqrt(3)]
125.264390°
arccos[-sqrt(3/7)]
130.893395°
135°arccos[-sqrt(5)/3]
138.189685°
arccos[-sqrt((n-4)/n)]
Dihedral angles
types 1 - 6
arccos[-1/sqrt(6)]
114.094843°
arccos[-sqrt(2/7)]
122.311533°
arccos[-sqrt(3/8)]
127.761244°
arccos(-2/3)
131.810315°
arccos[-sqrt((n-5)/n)]
Dihedral angles
types 1 - 7
arccos[-1/sqrt(7)]
112.207654°
120°arccos[-1/sqrt(3)]
125.264390°
arccos[-sqrt((n-6)/n)]
Dihedral angles
types 1 - 8
arccos[-1/sqrt(8)]
110.704811°
arccos[-sqrt(2)/3]
118.125506°
arccos[-sqrt((n-7)/n)]
Dihedral angles
types 1 - 9
arccos(-1/3)
109.471221°
arccos[-sqrt((n-8)/n)]
Dihedral angles
types 2 - 3
arccos[-2/sqrt(5)]
153.434949°
arccos[-sqrt(5/6)]
155.905157°
arccos[-sqrt(6/7)]
157.792346°
arccos[-sqrt(7/8)]
159.295189°
arccos[-sqrt((n-2)/(n-1))]
Dihedral angles
types 2 - 4
arccos[-sqrt(3/5)]
140.768480°
arccos[-sqrt(2/3)]
144.735610°
arccos[-sqrt(5/7)]
147.688467°
150°arccos[-sqrt((n-3)/(n-1))]
Dihedral angles
types 2 - 5
arccos[-sqrt(2/5)]
129.231520°
135°arccos[-sqrt(4/7)]
139.106605°
arccos[-sqrt(5/8)]
142.238756°
arccos[-sqrt((n-4)/(n-1))]
Dihedral angles
types 2 - 6
arccos[-1/sqrt(5)]
116.565051°
arccos[-1/sqrt(3)]
125.264390°
arccos[-sqrt(3/7)]
130.893395°
135°arccos[-sqrt((n-5)/(n-1))]
Dihedral angles
types 2 - 7
arccos[-1/sqrt(6)]
114.094843°
arccos[-sqrt(2/7)]
122.311533°
arccos[-sqrt(3/8)]
127.761244°
arccos[-sqrt((n-6)/(n-1))]
Dihedral angles
types 2 - 8
arccos[-1/sqrt(7)]
112.207654°
120°arccos[-sqrt((n-7)/(n-1))]
Dihedral angles
types 2 - 9
arccos[-1/sqrt(8)]
110.704811°
arccos[-sqrt((n-8)/(n-1))]
Dihedral angles
types 3 - 4
150°arccos[-2/sqrt(5)]
153.434949°
arccos[-sqrt(5/6)]
155.905157°
arccos[-sqrt(6/7)]
157.792346°
arccos[-sqrt((n-3)/(n-2))]
Dihedral angles
types 3 - 5
135°arccos[-sqrt(3/5)]
140.768480°
arccos[-sqrt(2/3)]
144.735610°
arccos[-sqrt(5/7)]
147.688467°
arccos[-sqrt((n-4)/(n-2))]
Dihedral angles
types 3 - 6
120°arccos[-sqrt(2/5)]
129.231520°
135°arccos[-sqrt(4/7)]
139.106605°
arccos[-sqrt((n-5)/(n-2))]
Dihedral angles
types 3 - 7
arccos[-1/sqrt(5)]
116.565051°
arccos[-1/sqrt(3)]
125.264390°
arccos[-sqrt(3/7)]
130.893395°
arccos[-sqrt((n-6)/(n-2))]
Dihedral angles
types 3 - 8
arccos[-1/sqrt(6)]
114.094843°
arccos[-sqrt(2/7)]
122.311533°
arccos[-sqrt((n-7)/(n-2))]
Dihedral angles
types 3 - 9
arccos[-1/sqrt(7)]
112.207654°
arccos[-sqrt((n-8)/(n-2))]
Dihedral angles
types 4 - 5
arccos[-sqrt(2/3)]
144.735610°
150°arccos[-2/sqrt(5)]
153.434949°
arccos[-sqrt(5/6)]
155.905157°
arccos[-sqrt((n-4)/(n-3))]
Dihedral angles
types 4 - 6
arccos[-1/sqrt(3)]
125.264390°
135°arccos[-sqrt(3/5)]
140.768480°
arccos[-sqrt(2/3)]
144.735610°
arccos[-sqrt((n-5)/(n-3))]
Dihedral angles
types 4 - 7
120°arccos[-sqrt(2/5)]
129.231520°
135°arccos[-sqrt((n-6)/(n-3))]
Dihedral angles
types 4 - 8
arccos[-1/sqrt(5)]
116.565051°
arccos[-1/sqrt(3)]
125.264390°
arccos[-sqrt((n-7)/(n-3))]
Dihedral angles
types 4 - 9
arccos[-1/sqrt(6)]
114.094843°
arccos[-sqrt((n-8)/(n-3))]
Dihedral angles
types 5 - 6
135°arccos[-sqrt(2/3)]
144.735610°
150°arccos[-2/sqrt(5)]
153.434949°
arccos[-sqrt((n-5)/(n-4))]
Dihedral angles
types 5 - 7
arccos[-1/sqrt(3)]
125.264390°
135°arccos[-sqrt(3/5)]
140.768480°
arccos[-sqrt((n-6)/(n-4))]
Dihedral angles
types 5 - 8
120°arccos[-sqrt(2/5)]
129.231520°
arccos[-sqrt((n-7)/(n-4))]
Dihedral angles
types 5 - 9
arccos[-1/sqrt(5)]
116.565051°
arccos[-sqrt((n-8)/(n-4))]
Dihedral angles
types 6 - 7
135°arccos[-sqrt(2/3)]
144.735610°
150°arccos[-sqrt((n-6)/(n-5))]
Dihedral angles
types 6 - 8
arccos[-1/sqrt(3)]
125.264390°
135°arccos[-sqrt((n-7)/(n-5))]
Dihedral angles
types 6 - 9
120°arccos[-sqrt((n-8)/(n-5))]
Dihedral angles
types 7 - 8
135°arccos[-sqrt(2/3)]
144.735610°
arccos[-sqrt((n-7)/(n-6))]
Dihedral angles
types 7 - 9
arccos[-1/sqrt(3)]
125.264390°
arccos[-sqrt((n-8)/(n-6))]
Dihedral angles
types 8 - 9
135°arccos[-sqrt((n-8)/(n-7))]


Symmetry Dn

Demihypercube Dn   (up)

As these polytopes Dn generally are nothing but the alternation of theregular hypercube Cn,and Cn in turn is the prism of Cn-1 atop Cn-1, so Dn likewisecan be described as thesegmentotope of the demihypercube Dn-1 atop the alternate demihypercube ~Dn-1.Thence, by means of thelace prism notation, Dn = x3o3o *b3o...o3o (n nodes) can be described as well asxo3oo3ox *b3oo...oo3oo&#x (n-1 node positions),which as such is nothing else than the demihypercubicalterprism.

A short consideration of general demihypercubes already occuredhere as well. Furthermore are demihypercubes special cases of theCoxeter-Elte-Gosset polytopes km,n, in fact those generally are clearly the ones of the form 1(n-2),1.

Dimension3D4D5D6DnD
Dynkin diagram
x3o3o
x3o3o *b3o
x3o3o *b3o3o
x3o3o *b3o3o3o
x3o3o *b3o...o3o
Acronym
tet
hex
hin
hax
n-demihypercube
Vertex Count4trig8oct16rap32rix2n-1
Facet Count
simplex
4trig8tet16pen32hix2n-1
Facet Count
demihyp.cube
8tet10hex12hin2n
Circumradiussqrt(3/8)
0.612372
1/sqrt(2)
0.707107
sqrt(5/8)
0.790569
sqrt(3)/2
0.866025
sqrt(n/8)
Inradius wrt.
simplex
1/sqrt(24)
0.204124
1/sqrt(8)
0.353553
3/sqrt(40)
0.474342
1/sqrt(3)
0.577350
(n-2)/sqrt(8n)
Inradius wrt.
demihyp.cube
1/sqrt(8)
0.353553
1/sqrt(8)
0.353553
1/sqrt(8)
0.353553
Volumesqrt(2)/12
0.117851
1/6
0.166667
13 sqrt(2)/120
0.153206
43/360
0.119444
(1-2n-1/n!)/sqrt(2n)
Surfacesqrt(3)
1.732051
4 sqrt(2)/3
1.885618
(10+sqrt(5))/6
2.039345
[39 sqrt(2)+2 sqrt(3)]/30
1.953948
[2 n!-2n-1(n-sqrt(n))]/[(n-1)! sqrt(2n-1)]
Dihedral angles
simp. - demi.
arccos(1/3)
70.528779°
(simp. - simp.)
120°arccos[-1/sqrt(5)]
116.565051°
arccos[-1/sqrt(6)]
114.094843°
arccos[-1/sqrt(n)]
Dihedral angles
demi. - demi.
90°90°90°
Dimension7D8D9D10DnD
Dynkin diagram
x3o3o *b3o3o3o3o
x3o3o *b3o3o3o3o3o
x3o3o *b3o3o3o3o3o3o
x3o3o *b3o3o3o3o3o3o3o
x3o3o *b3o...o3o
Acronym
hesa
hocto
henne
hede
n-demihypercube
Vertex Count64ril128roc256rene512reday2n-1
Facet Count
simplex
64hop128oca256ene512day2n-1
Facet Count
demihyp.cube
14hax16hesa18hocto20henne2n
Circumradiussqrt(7/8)
0.935414
13/sqrt(8)
1.060660
sqrt(5)/2
1.118034
sqrt(n/8)
Inradius wrt.
simplex
5/sqrt(56)
0.668153
3/4
0.75
7/sqrt(72)
0.824958
2/sqrt(5)
0.894427
(n-2)/sqrt(8n)
Inradius wrt.
demihyp.cube
1/sqrt(8)
0.353553
1/sqrt(8)
0.353553
1/sqrt(8)
0.353553
1/sqrt(8)
0.353553
1/sqrt(8)
0.353553
Volume311 sqrt(2)/5040
0.087266
157/2520
0.062302
2833 sqrt(2)/90720
0.044163
14173/453600
0.031246
(1-2n-1/n!)/sqrt(2n)
Surface[301+2 sqrt(7)]/180
1.701619
[2+311 sqrt(2)]/315
1.402605
943/840
1.122619
[14165 sqrt(2)+2 sqrt(5)]/22680
0.883457
[2 n!-2n-1(n-sqrt(n))]/[(n-1)! sqrt(2n-1)]
Dihedral angles
simp. - demi.
arccos[-1/sqrt(7)]
112.207654°
arccos[-1/sqrt(8)]
110.704811°
arccos(-1/3)
109.471221°
arccos[-1/sqrt(10)]
108.434949°
arccos[-1/sqrt(n)]
Dihedral angles
demi. - demi.
90°90°90°90°90°

Demicross hOn   (up)

These non-convex polytopes hOn generally are facetings of theregular orthoplex On using the maximal count of it's hemifacets, thereby reducing the facet simplices to the half of the former. Moreover it happens that generally hOn-1 is thevertex figure of hOn.As On could be seen as the Sn-1-antiprism thence too hOngenerally is the (non-convex)segmentotope oftheregular simplex Sn-1 atop the dual (pseudo?) simplex -(Sn-1).In fact the even dimensional demicrosses have inversion symmetry, i.e. the pseudo part does not apply,while for the odd dimensional ones the inversion would just result in the complementof the original demicross wrt. its convex hull (the orthoplex), i.e. here the pseudo part does apply.

These polytopes never are orientable. Accordingly novolume can be calculated either.

Dimension3D4D5D6DnD
Dynkin diagram
hemi(x3/2o3x )
hemi(x3o3/2o3o3*a )
hemi(o3o3/2o3o3*a3x )
hemi(o3o3/2o3o3*a3o3x )
hemi(o3o3/2o3o3*a3o...o3x )
Acronym
thah
tho
hehad
thox
n-demicross
Vertex Count6810122n
Facet Count
simplex
4trig8tet16pen32hix2n-1
Facet Count
hemi facets
3square4oct5hex6tacn
Circumradius1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
Inradius wrt.
simplex
1/sqrt(6)
0.408248
1/sqrt(8)
0.353553
1/sqrt(10)
0.316228
1/sqrt(12)
0.288675
1/sqrt(2n)
Inradius wrt.
hemi facets
00000
Surface3+sqrt(3)
4.732051
sqrt(8)
2.828427
[5+sqrt(5)]/6
1.206011
[3 sqrt(2)+sqrt(3)]/15
0.398313
(n+sqrt(n)) sqrt(2n-1)/(n-1)!
Dihedral anglesarccos[1/sqrt(3)]
54.735610°
60°arccos[1/sqrt(5)]
63.434949°
arccos[1/sqrt(6)]
65.905157°
arccos[1/sqrt(n)]
Dimension7D8D9D10DnD
Dynkin diagram
hemi(o3o3/2o3o3*a3o3o3x )
hemi(o3o3/2o3o3*a3o3o3o3x )
hemi(o3o3/2o3o3*a3o3o3o3o3x )
hemi(o3o3/2o3o3*a3o3o3o3o3o3x )
hemi(o3o3/2o3o3*a3o...o3x )
Acronym
guhsa
zeho
ekhen
vehde
n-demicross
Vertex Count141618202n
Facet Count
simplex
64hop128oca256ene512day2n-1
Facet Count
hemi facets
7gee8zee9ek10veen
Circumradius1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
1/sqrt(2)
0.707107
Inradius wrt.
simplex
1/sqrt(14)
0.267261
1/4
0.25
1/sqrt(18)
0.235702
1/sqrt(20)
0.223607
1/sqrt(2n)
Inradius wrt.
hemi facets
00000
Surface[7+sqrt(7)]/90
0.107175
[4+8 sqrt(2)]/630
0.0243075
1/210
0.00476190
[5 sqrt(2)+sqrt(5)]/11340
0.000820735
(n+sqrt(n)) sqrt(2n-1)/(n-1)!
Dihedral anglesarccos[1/sqrt(7)]
67.792346°
arccos[1/sqrt(8)]
69.295189°
arccos(1/3)
70.528779°
arccos[1/sqrt(10)]
71.565051°
arccos[1/sqrt(n)]

Truncated Demihypercube tDn   (up)

As the non-truncateddemihypercubes Dn generally could be described as thesegmentotope of the demihypercube Dn-1 atop the alternate demihypercube ~Dn-1, their truncations tDn become tristratic lace towers with the truncated demihypercube tDn-1 at the top side and the alternate truncated demihypercube ~tDn-1 at the bottom side. Inbetween there will be 2 vertex layers which happen to be non-uniform variants of therectified hypercube rCn-1. In fact, by means of thelace tower notation, tDn = x3o3o *b3o...o3o (n nodes) can be described as well asxuxo3xoox3oxux *b3oooo...oooo3oooo&#xt (n-1 node positions).

Dimension3D4D5D6DnD
Dynkin diagram
x3x3o
x3x3o *b3o
x3x3o *b3o3o
x3x3o *b3o3o3o
x3x3o *b3o...o3o
Acronym
tut
thex
thin
thax
n-trunc. demihyp.cube
Vertex Count12481604802n-2 n(n-1)
Facet Count
trunc. simpl.
4hig8tut16tip32tix2n-1
Facet Count
rect. simpl.
4trig8oct16rap32rix2n-1
Facet Count
trunc. demi.
8tut10thex12thin2n
Circumradiussqrt(11/8)
1.172604
sqrt(5/2)
1.581139
sqrt(29/8)
1.903943
sqrt(19)/2
2.179449
sqrt[(9n-16)/8]
Inradius wrt.
trunc. simpl.
sqrt(3/8)
0.612372
3/sqrt(8)
1.060660
9/sqrt(40)
1.423025
sqrt(3)
1.732051
3(n-2)/sqrt(8n)
Inradius wrt.
rect. simpl.
5/sqrt(24)
1.020621
sqrt(2)
1.414214
11/sqrt(40)
1.739253
7/sqrt(12)
2.020726
(3n-4)/sqrt(8n)
Inradius wrt.
trunc. demi.
3/sqrt(8)
1.060660
3/sqrt(8)
1.060660
3/sqrt(8)
1.060660
Volume23 sqrt(2)/12
2.710576
77/6
12.833333
623 sqrt(2)/24
36.710627
31243/360
86.786111
?
Surface7 sqrt(3)
12.124356
100 sqrt(2)/3
47.140452
(770+87 sqrt(5))/6
160.756319
[9345 sqrt(2)+526 sqrt(3)]/30
470.896149
?
Dihedral angles
tr.simp. - re.simp.
arccos(-1/3)
109.471221°
120°arccos(-3/5)
126.869898°
arccos(-2/3)
131.810315°
arccos[-(n-2)/n]
Dihedral angles
tr.simp. - tr.demi.
arccos(1/3)
70.528779°
(tr.simp. - tr.simp.)
120°arccos[-1/sqrt(5)]
116.565051°
arccos[-1/sqrt(6)]
114.094843°
arccos[-1/sqrt(n)]
Dihedral angles
re.simp. -tr.demi.
120°arccos[-1/sqrt(5)]
116.565051°
arccos[-1/sqrt(6)]
114.094843°
arccos[-1/sqrt(n)]
Dihedral angles
tr.demi. - tr.demi.
90°90°90°
Dimension7D8D9D10DnD
Dynkin diagram
x3x3o *b3o3o3o3o
x3x3o *b3o3o3o3o3o
x3x3o *b3o3o3o3o3o3o
x3x3o *b3o3o3o3o3o3o3o
x3x3o *b3o...o3o
Acronym
thesa
thocto
thenne
thede
n-trunc. demihyp.cube
Vertex Count134435849216230402n-2 n(n-1)
Facet Count
trunc. simpl.
64til128toc256tene512teday2n-1
Facet Count
rect. simpl.
64ril128roc256rene512reday2n-1
Facet Count
demihyp.cube
14thax16thesa18thocto20thenne2n
Circumradiussqrt(47/8)
2.423840
sqrt(7)
2.645751
sqrt(65/8)
2.850439
sqrt(37)/2
3.041381
sqrt[(9n-16)/8]
Inradius wrt.
trunc. simpl.
15/sqrt(56)
2.004459
9/4
2.25
7/sqrt(8)
2.474874
6/sqrt(5)
2.683282
3(n-2)/sqrt(8n)
Inradius wrt.
rect. simpl.
17/sqrt(56)
2.271721
5/2
2.5
23/sqrt(72)
2.710576
13/sqrt(20)
2.906888
(3n-4)/sqrt(8n)
Inradius wrt.
trunc. demi.
3/sqrt(8)
1.060660
3/sqrt(8)
1.060660
3/sqrt(8)
1.060660
3/sqrt(8)
1.060660
3/sqrt(8)
1.060660
Volume34081 sqrt(2)/240
200.824218
????
Surface?????
Dihedral angles
tr.simp. - re.simp.
arccos(-5/7)
135.584691°
arccos(-3/4)
138.590378°
arccos(-7/9)
141.057559°
arccos(-4/5)
143.130102°
arccos[-(n-2)/n]
Dihedral angles
tr.simp. - tr.demi.
arccos[-1/sqrt(7)]
112.207654°
arccos[-1/sqrt(8)]
110.704811°
arccos(-1/3)
109.471221°
arccos[-1/sqrt(10)]
108.434949°
arccos[-1/sqrt(n)]
Dihedral angles
re.simp. - tr.demi.
arccos[-1/sqrt(7)]
112.207654°
arccos[-1/sqrt(8)]
110.704811°
arccos(-1/3)
109.471221°
arccos[-1/sqrt(10)]
108.434949°
arccos[-1/sqrt(n)]
Dihedral angles
tr.demi. - tr.demi.
90°90°90°90°90°

Maximal Expanded Demihypercube eDn   (up)

Within these polytopes eDn generally can be described as the tristratic lace tower ofthedemihypercube Dn-1 atop the maximal expanded demihypercube eDn-1 atop the maximal expanded alternate demihypercube ~eDn-1 atop the alternate demihypercube ~Dn-1.Thence, by means of thelace tower notation,eDn = x3o3o *b3o...o3x (n nodes) can be described as well asxxoo3oooo3ooxx *b3oooo...oooo3oxxo&#xt (n-1 node positions).

Dimension3D4D5D6DnD
Dynkin diagram
x3x3o
x3o3o *b3x
x3o3o *b3o3x
x3o3o *b3o3o3x
x3o3o *b3o...o3x
Acronym
tut
rit
siphin
sochax
max-exp. n-demihyp.cube
Vertex Count123280192n 2n-1
Facet Count
simplex
4trig8tet16pen32hix2n-1
Facet Count
exp. simpl.
4hig8co16spid32scad2n-1
Facet Count
duoprism I
160tratet4n(n-1)(n-2)/3
Facet Count
prism
40tepe60hexip2n(n-1)
Facet Count
demihyp.cube
8tet10hex12hin2n
Circumradiussqrt(11/8)
1.172604
sqrt(3/2)
1.224745
sqrt(13/8)
1.274755
sqrt(7)/2
1.322876
sqrt[(n+8)/8]
Inradius wrt.
simplex facets
5/sqrt(24)
1.020621
3/sqrt(8)
1.060660
7/sqrt(40)
1.106797
2/sqrt(3)
1.154701
(n+2)/sqrt(8n)
Inradius wrt.
exp. simpl. fac.
sqrt(3/8)
0.612372
1/sqrt(2)
0.707107
sqrt(5/8)
0.790569
sqrt(3)/2
0.866025
sqrt(n/8)
Inradius wrt.
d.pr. I fac.
5/sqrt(24)
1.020621
5/sqrt(24)
1.020621
Inradius wrt.
prism facets
111
Inradius wrt.
demihyp.c. fac.
3/sqrt(8)
1.060660
3/sqrt(8)
1.060660
3/sqrt(8)
1.060660
3/sqrt(8)
1.060660
Volume23 sqrt(2)/12
2.710576
23/6
3.833333
467 sqrt(2)/120
5.503648
2737/360
7.602778
?
Surface7 sqrt(3)
12.124356
44 sqrt(2)/3
20.741799
[10+20 sqrt(2)+71 sqrt(5)]/6
32.840850
[300+39 sqrt(2)+506 sqrt(3)+100 sqrt(6)]/30
49.217367
?
Dihedral angles
simpl. - e.sim.
arccos(-1/3)
109.471221°
120°arccos(-3/5)
126.869898°
arccos(-2/3)
131.810315°
arccos[-(n-2)/n]
Dihedral angles
e.sim. - e.sim.
arccos(1/3)
70.528779°
90°arccos(-1/5)
101.536959°
arccos(-1/3)
109.471221°
arccos[-(n-4)/n]
Dihedral angles
e.sim. - d.pr. I
??
Dihedral angles
e.sim. - prism
arccos[-sqrt(2/5)]
129.231520°
??
Dihedral angles
e.sim. - demi.
120°arccos[-1/sqrt(5)]
116.565051°
arccos[-1/sqrt(6)]
114.094843°
arccos[-1/sqrt(n)]
Dihedral angles
prism - d.pr. I
??
Dihedral angles
prism - demi.
135°135°135°
Dimension7D8D9D10DnD
Dynkin diagram
x3o3o *b3o3o3o3x
x3o3o *b3o3o3o3o3x
x3o3o *b3o3o3o3o3o3x
x3o3o *b3o3o3o3o3o3o3x
x3o3o *b3o...o3x
Acronym
suthesa
spuho
?
?
max-exp. n-demihyp.cube
Vertex Count448102423045120n 2n-1
Facet Count
simplex
64hop128oca256ene512day2n-1
Facet Count
exp. simpl.
64staf128suph256soxeb512?2n-1
Facet Count
duoprism V
15360tethopn! 27/[7!(n-7)!]
Facet Count
duoprism IV
5376tethix7680hexhixn! 26/[6!(n-6)!]
Facet Count
duoprism III
1792tetpen4032penhex8064penhinn! 25/[5!(n-5)!]
Facet Count
duoprism II
560tetdip1120tethex2016tethin3360tethaxn! 24/[4!(n-4)!]
Facet Count
duoprism I
280trahex448trahin672trahax960trahesa4n(n-1)(n-2)/3
n! 23/[3!(n-3)!]
Facet Count
prism
84hinnip112haxip144hesape180hoctope2n(n-1)
n! 22/[2!(n-2)!]
Facet Count
demihyp.cube
14hax16hesa18hocto20henne2n
n! 21/[1!(n-1)!]
Circumradiussqrt(15/8)
1.369306
sqrt(2)
1.414214
sqrt(17/8)
1.457738
3/2
1.5
sqrt[(n+8)/8]
Inradius wrt.
simplex
9/sqrt(56)
1.202676
5/4
1.25
11/sqrt(72)
1.296362
3/sqrt(5)
1.341641
(n+2)/sqrt(8n)
Inradius wrt.
exp. simpl.
sqrt(7/8)
0.935414
13/sqrt(8)
1.060660
sqrt(5)/2
1.118034
sqrt(n/8)
Inradius wrt.
duoprism V
9/sqrt(56)
1.202676
9/sqrt(56)
1.202676
(3+6)/sqrt[(1+6)8]
Inradius wrt.
duoprism IV
2/sqrt(3)
1.154701
2/sqrt(3)
1.154701
2/sqrt(3)
1.154701
(3+5)/sqrt[(1+5)8]
Inradius wrt.
duoprism III
7/sqrt(40)
1.106797
7/sqrt(40)
1.106797
7/sqrt(40)
1.106797
7/sqrt(40)
1.106797
(3+4)/sqrt[(1+4)8]
Inradius wrt.
duoprism II
3/sqrt(8)
1.060660
3/sqrt(8)
1.060660
3/sqrt(8)
1.060660
3/sqrt(8)
1.060660
3/sqrt(8)
1.060660
(3+3)/sqrt[(1+3)8]
Inradius wrt.
duoprism I
5/sqrt(24)
1.020621
5/sqrt(24)
1.020621
5/sqrt(24)
1.020621
5/sqrt(24)
1.020621
5/sqrt(24)
1.020621
(3+2)/sqrt[(1+2)8]
Inradius wrt.
prism
11111
(3+1)/sqrt[(1+1)8]
Inradius wrt.
demihyp.cube
3/sqrt(8)
1.060660
3/sqrt(8)
1.060660
3/sqrt(8)
1.060660
3/sqrt(8)
1.060660
3/sqrt(8)
1.060660
(3+0)/sqrt[(1+0)8]
Volume?????
Surface?????
Dihedral angles
simpl. - e.sim.
arccos(-5/7)
135.584691°
arccos[-3/4)
138.590378°
arccos(-7/9)
141.057559°
arccos(-4/5)
143.130102°
arccos[-(n-2)/n]
Dihedral angles
e.sim. - e.sim.
arccos(-3/7)
115.376934°
120°arccos(-5/9)
123.748989°
arccos(-3/5)
126.869898°
arccos[-(n-4)/n]
Dihedral angles
e.sim. - d.pr. V
??
Dihedral angles
e.sim. - d.pr. IV
???
Dihedral angles
e.sim. - d.pr. III
????
Dihedral angles
e.sim. - d.pr. II
?????
Dihedral angles
e.sim. - d.pr. I
?????
Dihedral angles
e.sim. - prism
?????
Dihedral angles
e.sim. - demi.
arccos[-1/sqrt(7)]
112.207654°
arccos[-1/sqrt(8)]
110.704811°
arccos(-1/3)
109.471221°
arccos[-1/sqrt(10)]
108.434949°
arccos[-1/sqrt(n)]
Dihedral angles
prism - d.pr. V
??
Dihedral angles
prism - d.pr. IV
???
Dihedral angles
prism - d.pr. III
????
Dihedral angles
prism - d.pr. II
?????
Dihedral angles
prism - d.pr. I
?????
Dihedral angles
prism - demi.
135°135°135°135°135°


Symmetry En

It is known that those series clearly terminate for n=8, i.e. that for n=9 they would result in aflat tesselations instead. This accordingly reflects itself in the provided dimension formulae:measures like circumradii and inradii all would become infinite for n=9and dihedrals likewise would all become 180° then.

Gossetic n2,1   (up)
Dimension4D5D6D7D8DnD
Dynkin diagram
o3o3x3o
o3o3o3x *c3o
o3o3o3o3x *c3o
o3o3o3o3o3x *c3o
o3o3o3o3o3o3x *c3o
o3o...o3x *c3o
Acronym
rap
hin
jak
naq
fy
(n-4)2,1
Vertex Count10trip16rap27hin56jak240naq?
Facet Count
simplex
5tet16pen72hix576hop17280oca?
Facet Count
orthoplex
5oct10hex27tac126gee2160zee?
Circumradiussqrt(3/5)
0.774597
sqrt(5/8)
0.790569
sqrt(2/3)
0.816497
sqrt(3)/2
0.866025
1sqrt[(10-n)/(18-2n)]
Inradius wrt.
simplex
3/sqrt(40)
0.474342
3/sqrt(40)
0.474342
1/2
0.5
3/sqrt(28)
0.566947
3/4
0.75
3/sqrt[n(18-2n)]
Inradius wrt.
orthoplex
1/sqrt(10)
0.316228
1/sqrt(8)
0.353553
1/sqrt(6)
0.408248
1/2
0.5
1/sqrt(2)
0.707107
1/sqrt(18-2n)
Volume11 sqrt(5)/96
0.256216
13 sqrt(2)/120
0.153206
sqrt(3)/16
0.108253
17/140
0.121429
57/112
0.508929
?
Surface25 sqrt(2)/12
2.946278
[10+sqrt(5)]/6
2.039345
[18 sqrt(2)+3 sqrt(3)]/20
1.532600
[14+sqrt(7)]/10
1.664575
[6+24 sqrt(2)]/7
5.705875
?
Dihedral angles
simpl. - ortho.
arccos(-1/4)
104.477512°
arccos[-1/sqrt(5)]
116.565051°
arccos[-sqrt(3/8)]
127.761244°
arccos[-2/sqrt(7)]
139.106605°
arccos[-5/sqrt(32)]
152.114433°
arccos[-(n-3)/sqrt(4n)]
Dihedral angles
ortho. - ortho.
arccos(1/4)
75.522488°
90°arccos(-1/4)
104.477512°
120°arccos(-3/4)
138.590378°
arccos[-(n-5)/4]

Gossetic 2n,1   (up)
Dimension4D5D6D7D8DnD
Dynkin diagram
x3o3o3o
x3o3o3o *c3o
x3o3o3o3o *c3o
x3o3o3o3o3o *c3o
x3o3o3o3o3o3o *c3o
x3o...o3o *c3o
Acronym
pen
tac
jak
laq
bay
2n,1
Vertex Count5tet10hex27hin126hax2160hesa?
Facet Count
simplex
5tet16pen72hix576hop17280oca?
Facet Count
Gossetic
16pen27tac56jak240laq?
Circumradiussqrt(2/5)
0.632456
1/sqrt(2)
0.707107
sqrt(2/3)
0.816497
1sqrt(2)
1.414214
sqrt[2/(9-n)]
Inradius wrt.
simplex
1/sqrt(40)
0.158114
1/sqrt(10)
0.316228
1/2
0.5
2/sqrt(7)
0.755929
5/4
1.25
(n-3)/sqrt[2n(9-n)]
Inradius wrt.
Gossetic
1/sqrt(10)
0.316228
1/sqrt(6)
0.408248
1/sqrt(3)
0.577350
1sqrt[2/((10-n)(9-n))]
Volumesqrt(5)/96
0.023292
sqrt(2)/30
0.047140
sqrt(3)/16
0.108253
37/70
0.528571
1791/112
15.991071
?
Surface5 sqrt(2)/12
0.589256
sqrt(5)/3
0.745356
[18 sqrt(2)+3 sqrt(3)]/20
1.532600
[35 sqrt(3)+sqrt(7)]/10
6.326753
894/7
127.714286
?
Dihedral angles
simpl. - Goss.
arccos(1/4)
75.522488°
simpl. - simpl.
arccos(-3/5)
126.869898°
arccos[-sqrt(3/8)]
127.761244°
arccos[-sqrt(3/7)]
130.893395°
arccos(-3/4)
138.590378°
arccos[-3/sqrt(n(10-n))]
Dihedral angles
Goss. - Goss.
arccos(-1/4)
104.477512°
arccos(-1/3)
109.471221°
120°arccos[-1/(10-n)]

Gossetic 1n,2   (up)
Dimension4D5D6D7D8DnD
Dynkin diagram
o3o3o3x
o3o3o3o *c3x
o3o3o3o3o *c3x
o3o3o3o3o3o *c3x
o3o3o3o3o3o3o *c3x
o3o...o3o *c3x
Acronym
pen
hin
mo
lin
bif
1n,2
Vertex Count5tet16rap72dot576bril17280broc?
Facet Count
demihypercube
5tet10hex27hin126hax2160hesa?
Facet Count
Gossetic
16pen27hin56mo240lin?
Circumradiussqrt(2/5)
0.632456
sqrt(5/8)
0.790569
1sqrt(7)/2
1.322876
2sqrt[n/(18-2n)]
Inradius wrt.
demihypercube
1/sqrt(40)
0.158114
1/sqrt(8)
0.353553
sqrt(3/8)
0.612372
15/sqrt(8)
1.767767
(n-3)/sqrt[8(9-n)]
Inradius wrt.
Gossetic
3/sqrt(40)
0.474342
sqrt(3/8)
0.612372
sqrt(3)/2
0.866025
3/2
1.5
3/sqrt[2(10-n)(9-n)]
Volumesqrt(5)/96
0.023292
13 sqrt(2)/120
0.153206
39 sqrt(3)/80
0.844375
844985/112
401.651786
?
Surface5 sqrt(2)/12
0.589256
[10+sqrt(5)]/6
2.039345
117 sqrt(2)/20
8.273149
[301+546 sqrt(3)]/20
62.334987
[13440+933 sqrt(2)]/7
2108.494465
?
Dihedral angles
demi. - demi.
arccos(1/4)
75.522488°
90°arccos(-1/4)
104.477512°
120°arccos(-3/4)
138.590378°
arccos[-(n-5)/4]
Dihedral angles
demi. - Goss.
arccos[-1/sqrt(5)]
116.565051°
120°arccos[-1/sqrt(3)]
125.264390°
135°arccos[-1/sqrt(10-n)]
Dihedral angles
Goss. - Goss.
arccos(-1/4)
104.477512°
arccos(-1/3)
109.471221°
120°arccos[-1/(10-n)]

RectifiedGossetic r(n2,1)   (up)
Dimension4D5D6D7D8DnD
Dynkin diagram
o3x3o3x
o3o3x3o *c3o
o3o3o3x3o *c3o
o3o3o3o3x3o *c3o
o3o3o3o3o3x3o *c3o
o3o...o3x3o *c3o
Acronym
srip
nit
rojak
ranq
riffy
rect. (n-4)2,1
Vertex Count30xx ox&#q80tisdip216rappip756hinnip6720jakip?
Facet Count
rect. simpl.
5oct16rap72rix576ril17280roc?
Facet Count
Gossetic
10trip16rap27hin56jak240naq?
Facet Count
rect. ortho.
5co10ico27rat126rag2160rez?
Circumradiussqrt(7/5)
1.183216
sqrt(3/2)
1.224745
sqrt(5/3)
1.290994
sqrt(2)
1.414214
sqrt(3)
1.732051
sqrt[(11-n)/(9-n)]
Inradius wrt.
rect. simpl.
3/sqrt(10)
0.948683
3/sqrt(10)
0.948683
13/sqrt(7)
1.133893
3/2
1.5
sqrt[18/(n(9-n))]
Inradius wrt.
Gossetic
7/sqrt(60)
0.903696
3/sqrt(10)
0.948683
5/sqrt(24)
1.020621
2/sqrt(3)
1.154701
3/2
1.5
(11-n)/sqrt[2(10-n)(9-n)]
Inradius wrt.
rect. ortho.
sqrt(2/5)
0.632456
1/sqrt(2)
0.707107
sqrt(2/3)
0.816497
1sqrt(2)
1.414214
sqrt[2/(9-n)]
Volume73 sqrt(5)/48
3.400687
31 sqrt(2)/10
4.384062
601 sqrt(3)/160
6.506016
1053/70
15.042857
3597/28
128.464286
?
Surface[20 sqrt(2)+5 sqrt(3)]/2
18.472263
[60+11 sqrt(5)]/3
28.198916
[1089 sqrt(2)+156 sqrt(3)]/40
45.256962
[812+35 sqrt(3)+57 sqrt(7)]/10
102.342960
[924+2904 sqrt(2)]/7
718.696598
?
Dihedral angles
r.sim. - Goss.
arccos[-sqrt(3/8)]
127.761244°
arccos(-3/5)
126.869898°
arccos[-sqrt(3/8)]
127.761244°
arccos[-sqrt(3/7)]
130.893395°
arccos(-3/4)
138.590378°
arccos[-3/sqrt(n(10-n))]
Dihedral angles
r.sim. - r.orth.
arccos(-1/4)
104.477512°
arccos[-1/sqrt(5)]
116.565051°
arccos[-sqrt(3/8)]
127.761244°
arccos[-2/sqrt(7)]
139.106605°
arccos[-5/sqrt(32)]
152.114433°
arccos[-(n-3)/sqrt(4n)]
Dihedral angles
Goss. - r.orth.
arccos[-1/sqrt(6)]
114.094843°
arccos[-1/sqrt(5)]
116.565051°
120°arccos[-1/sqrt(3)]
125.264390°
135°arccos[-1/sqrt(10-n)]
Dihedral angles
r.orth. - r.orth.
arccos(1/4)
75.522488°
90°arccos(-1/4)
104.477512°
120°arccos(-3/4)
138.590378°
arccos[-(n-5)/4]

RectifiedGossetic r(2n,1)   (up)
Dimension4D5D6D7D8DnD
Dynkin diagram
o3x3o3o
o3x3o3o *c3o
o3x3o3o3o *c3o
o3x3o3o3o3o *c3o
o3x3o3o3o3o3o *c3o
o3x3o...o3o *c3o
Acronym
rap
rat
rojak
rolaq
robay
rectified 2n,1
Vertex Count10trip40ope216rappip2016rixip69120rillip?
Facet Count
rect. simplex
5oct16rap72rix576ril17280roc?
Facet Count
rect. Gossetic
16rap27rat56rojak240rolaq?
Facet Count
demihypercube
5tet10hex27hin126hax2160hesa?
Circumradiussqrt(3/5)
0.774597
1sqrt(5/3)
1.290994
sqrt(3)
1.732051
sqrt(7)
2.645751
sqrt[(n-1)/(9-n)]
Inradius wrt.
rect. simplex
1/sqrt(10)
0.316228
sqrt(2/5)
0.632456
14/sqrt(7)
1.511858
5/2
2.5
(n-3) sqrt[2/(n(9-n))]
Inradius wrt.
rect. Gossetic
sqrt(2/5)
0.632456
sqrt(2/3)
0.816497
2/sqrt(3)
1.154701
2sqrt[8/((10-n)(9-n))]
Inradius wrt.
demihypercube
3/sqrt(40)
0.474342
1/sqrt(2)
0.707107
5/sqrt(24)
1.020621
3/2
1.5
7/sqrt(8)
2.474874
(n-1)/sqrt[8(9-n)]
Volume11 sqrt(5)/96
0.256216
9 sqrt(2)/10
1.272792
601 sqrt(3)/160
6.506016
18643/280
66.582143
457563/112
4085.383929
?
Surface25 sqrt(2)/12
2.946278
(5+11 sqrt(5))/3
9.865583
[1089 sqrt(2)+156 sqrt(3)]/40
45.256962
[301+4207 sqrt(3)+114 sqrt(7)]/20
394.467670
??
Dihedral angles
r.simp. - r.Goss.
arccos(1/4)
75.522488°
r.simp. - r.simp.
arccos(-3/5)
126.869898°
arccos[-sqrt(3/8)]
127.761244°
arccos[-sqrt(3/7)]
130.893395°
arccos(-3/4)
138.590378°
arccos[-3/sqrt(n(10-n))]
Dihedral angles
r.Goss. - r.Goss.
arccos(-1/4)
104.477512°
arccos(-1/3)
109.471221°
120°arccos[-1/(10-n)]
Dihedral angles
r.simp. - demi.
arccos(-1/4)
104.477512°
arccos[-1/sqrt(5)]
116.565051°
arccos[-sqrt(3/8)]
127.761244°
arccos[-2/sqrt(7)]
139.106605°
arccos[-5/sqrt(32)]
152.114433°
arccos[-(n-3)/sqrt(4n)]
Dihedral angles
r.Goss. - demi.
arccos[-1/sqrt(5)]
116.565051°
120°arccos[-1/sqrt(3)]
125.264390°
135°arccos[-1/sqrt(10-n)]

RectifiedGossetic r(1n,2)   (up)

The rectified Gossetic r(1n,2) surely can be described likewise as the birectified Gossetic br(2n,1). In fact it is that polytope, where in itsCoxeter-Dynkin diagram exactly the bifurcation node is marked.

Dimension4D5D6D7D8DnD
Dynkin diagram
o3o3x3o
o3o3x3o *c3o
o3o3x3o3o *c3o
o3o3x3o3o3o *c3o
o3o3x3o3o3o3o *c3o
o3o3x3o...o3o *c3o
Acronym
rap
nit
ram
lanq
buffy
rectified 1n,2
Vertex Count10trip80tisdip720tratrip10080tratepe483840trippen?
Facet Count
birect. simp.
5tet16rap72dot576bril17280broc?
Facet Count
rect. Goss.
16rap27nit56ram240lanq?
Facet Count
birect. hyp.c.
5oct10ico27nit126brox2160bersa?
Circumradiussqrt(3/5)
0.774597
sqrt(3/2)
1.224745
sqrt(3)
1.732051
sqrt(6)
2.449490
sqrt(15)
3.872983
sqrt[3(n-3)/(9-n)]
Inradius wrt.
birect. simp.
3/sqrt(40)
0.474342
3/sqrt(10)
0.948683
3/2
1.5
6/sqrt(7)
2.267787
15/4
3.75
3(n-3)/sqrt[2n(9-n)]
Inradius wrt.
rect. Gossetic
3/sqrt(10)
0.948683
sqrt(3/2)
1.224745
sqrt(3)
1.732051
3sqrt[18/((10-n)(9-n))]
Inradius wrt.
birect. hyp.c.
1/sqrt(10)
0.316228
1/sqrt(2)
0.707107
sqrt(3/2)
1.224745
25/sqrt(2)
3.535534
(n-3)/sqrt(18-2n)
Volume11 sqrt(5)/96
0.256216
31 sqrt(2)/10
4.384062
243 sqrt(3)/8
52.611043
???
Surface25 sqrt(2)/12
2.946278
[60+11 sqrt(5)]/3
28.198916
[1674 sqrt(2)+99 sqrt(3)]/10
253.886653
???
Dihedral angles
bir.s. - r.Goss.
arccos(-3/5)
126.869898°
arccos[-sqrt(3/8)]
127.761244°
arccos[-sqrt(3/7)]
130.893395°
arccos(-3/4)
138.590378°
arccos[-3/sqrt(n(10-n))]
Dihedral angles
bir.s. - bir.h.c.
arccos(-1/4)
104.477512°
arccos[-1/sqrt(5)]
116.565051°
arccos[-sqrt(3/8)]
127.761244°
arccos[-2/sqrt(7)]
139.106605°
arccos[-5/sqrt(32)]
152.114433°
arccos[-(n-3)/sqrt(4n)]
Dihedral angles
r.Goss. - r.Goss.
arccos(-1/4)
104.477512°
arccos(-1/3)
109.471221°
120°arccos[-1/(10-n)]
Dihedral angles
r.Goss. - bir.h.c.
arccos[-1/sqrt(5)]
116.565051°
120°arccos[-1/sqrt(3)]
125.264390°
135°arccos[-1/sqrt(10-n)]
Dihedral angles
bir.h.c. - bir.h.c.
arccos(1/4)
75.522488°
90°arccos(-1/4)
104.477512°
120°arccos(-3/4)
138.590378°
arccos[-(n-5)/4]

TruncatedGossetic t(n2,1)   (up)
Dimension4D5D6D7D8DnD
Dynkin diagram
o3x3x3x
o3o3x3x *c3o
o3o3o3x3x *c3o
o3o3o3o3x3x *c3o
o3o3o3o3o3x3x *c3o
o3o...o3x3x *c3o
Acronym
grip
thin
tojak
tanq
tiffy
truncated (n-4)2,1
Vertex Count60160432151213440?
Facet Count
trunc. simplex
5tut16tip72tix576til17280toc?
Facet Count
Gossetic
10trip16rap27hin56jak240naq?
Facet Count
trunc. ortho.
5toe10thex27tot126tag2160taz?
Circumradiussqrt(17/5)
1.843909
sqrt(29/8)
1.903943
2sqrt(19)/2
2.179449
sqrt(7)
2.645751
sqrt[(54-5n)/(18-2n)]
Inradius wrt.
trunc. simplex
9/sqrt(40)
1.423025
9/sqrt(40)
1.423025
3/2
1.5
9/sqrt(28)
1.700840
9/4
2.25
9/sqrt[n(18-2n)]
Inradius wrt.
Gossetic
13/sqrt(60)
1.678293
11/sqrt(40)
1.739253
sqrt(27/8)
1.837117
7/sqrt(12)
2.020726
5/2
2.5
(21-2n)/sqrt[(18-2n)(10-n)]
Inradius wrt.
trunc. ortho.
3/sqrt(10)
0.948683
3/sqrt(8)
1.060660
sqrt(3/2)
1.224745
3/2
1.5
3/sqrt(2)
2.121320
3/sqrt(18-2n)
Volume287 sqrt(5)/32
20.054735
623 sqrt(2)/24
36.710627
7251 sqrt(3)/160
78.494378
37109/140
265.064286
??
Surface[595 sqrt(2)+30 sqrt(3)]/12
74.451549
[770+87 sqrt(5)]/6
160.756319
[8685 sqrt(2)+1422 sqrt(3)]/40
368.635526
[10122+35 sqrt(3)+722 sqrt(7)]/10
1209.285422
??
Dihedral angles
tr.simp. - Goss.
arccos[-sqrt(3/8)]
127.761244°
arccos(-3/5)
126.869898°
arccos[-sqrt(3/8)]
127.761244°
arccos[-sqrt(3/7)]
130.893395°
arccos(-3/4)
138.590378°
arccos[-3/sqrt(n(10-n))]
Dihedral angles
tr.sim. - tr.orth.
arccos(-1/4)
104.477512°
arccos[-1/sqrt(5)]
116.565051°
arccos[-sqrt(3/8)]
127.761244°
arccos[-2/sqrt(7)]
139.106605°
arccos[-5/sqrt(32)]
152.114433°
arccos[-(n-3)/sqrt(4n)]
Dihedral angles
Goss. - tr.orth.
arccos[-1/sqrt(6)]
114.094843°
arccos[-1/sqrt(5)]
116.565051°
120°arccos[-1/sqrt(3)]
125.264390°
135°arccos[-1/sqrt(10-n)]
Dihedral angles
tr.orth. - tr.orth.
arccos(1/4)
75.522488°
90°arccos(-1/4)
104.477512°
120°arccos(-3/4)
138.590378°
arccos[-(n-5)/4]

TruncatedGossetic t(2n,1)   (up)
Dimension4D5D6D7D8DnD
Dynkin diagram
x3x3o3o
x3x3o3o *c3o
x3x3o3o3o *c3o
x3x3o3o3o3o *c3o
x3x3o3o3o3o3o *c3o
x3x3o...o3o *c3o
Acronym
tip
tot
tojak
talq
toby
truncated 2n,1
Vertex Count20804324032138240?
Facet Count
trunc. simplex
5tut16tip72tix576til17280toc?
Facet Count
trunc. Gossetic
16tip27tot56tojak240talq?
Facet Count
demihypercube
5tet10hex27hin126hax2160hesa?
Circumradiussqrt(8/5)
1.264911
sqrt(5/2)
1.581139
2sqrt(7)
2.645751
4sqrt[2n/(9-n)]
Inradius wrt.
trunc. simplex
3/sqrt(40)
0.474342
3/sqrt(10)
0.948683
3/2
1.5
6/sqrt(7)
2.267787
15/4
3.75
3(n-3)/sqrt[2n(9-n)]
Inradius wrt.
trunc. Gossetic
3/sqrt(10)
0.948683
sqrt(3/2)
1.224745
sqrt(3)
1.732051
3sqrt[18/((9-n)(10-n))]
Inradius wrt.
demihypercube
7/sqrt(40)
1.106797
sqrt(2)
1.414214
sqrt(27/8)
1.837117
5/2
2.5
11/sqrt(8)
3.889087
(n+3)/sqrt[8(9-n)]
Volume19 sqrt(5)/24
1.770220
119 sqrt(2)/15
11.219428
7251 sqrt(3)/160
78.494378
???
Surface10 sqrt(2)
14.142136
(5+76 sqrt(5))/3
58.313722
[8685 sqrt(2)+1422 sqrt(3)]/40
368.635526
???
Dihedral angles
tr.sim. - tr.Goss.
arccos(1/4)
75.522488°
tr.sim. - tr.sim.
arccos(-3/5)
126.869898°
arccos[-sqrt(3/8)]
127.761244°
arccos[-sqrt(3/7)]
130.893395°
arccos(-3/4)
138.590378°
arccos[-3/sqrt(n(10-n))]
Dihedral angles
tr.Goss. - tr.Goss.
arccos(-1/4)
104.477512°
arccos(-1/3)
109.471221°
120°arccos[-1/(10-n)]
Dihedral angles
tr.sim. - demi.
arccos(-1/4)
104.477512°
arccos[-1/sqrt(5)]
116.565051°
arccos[-sqrt(3/8)]
127.761244°
arccos[-2/sqrt(7)]
139.106605°
arccos[-5/sqrt(32)]
152.114433°
arccos[-(n-3)/sqrt(4n)]
Dihedral angles
tr.Goss. - demi.
arccos[-1/sqrt(5)]
116.565051°
120°arccos[-1/sqrt(3)]
125.264390°
135°arccos[-1/sqrt(10-n)]

TruncatedGossetic t(1n,2)   (up)
Dimension4D5D6D7D8DnD
Dynkin diagram
o3o3x3x
o3o3x3o *c3x
o3o3x3o3o *c3x
o3o3x3o3o3o *c3x
o3o3x3o3o3o3o *c3x
o3o3x3o...o3o *c3x
Acronym
tip
thin
tim
tolin
tabif
truncated 1n,2
Vertex Count20160144020160967680?
Facet Count
birect. simp.
5tet16rap72dot576bril17280broc?
Facet Count
trunc. Goss.
16tip27thin56tim240tolin?
Facet Count
trunc. demih.c.
5tut10thex27thin126thax2160thesa?
Circumradiussqrt(8/5)
1.264911
sqrt(29/8)
1.903943
sqrt(7)
2.645751
sqrt(55)/2
3.708099
sqrt(34)
5.830952
sqrt[(13n-36)/(18-2n)]
Inradius wrt.
birect. simp.
7/sqrt(40)
1.106797
11/sqrt(40)
1.739253
5/2
2.5
19/sqrt(28)
3.590662
23/4
5.75
(4n-9)/sqrt[2n(9-n)]
Inradius wrt.
trunc. Goss.
9/sqrt(40)
1.423025
sqrt(27/8)
1.837117
sqrt(27)/2
2.598076
9/2
4.5
9/sqrt[2(9-n)(10-n)]
Inradius wrt.
trunc. demih.c.
3/sqrt(40)
0.474342
3/sqrt(8)
1.060660
sqrt(27/8)
1.837117
315/sqrt(8)
5.303301
3(n-3)/sqrt[8(9-n)]
Volume19 sqrt(5)/24
1.770220
623 sqrt(2)/24
36.710627
5673 sqrt(3)/16
614.120264
???
Surface10 sqrt(2)
14.142136
[770+87 sqrt(5)]/6
160.756319
[28035 sqrt(2)+198 sqrt(3)]/20
1999.521164
???
Dihedral angles
bir.s. - tr.Goss.
arccos(-3/5)
126.869898°
arccos[-sqrt(3/8)]
127.761244°
arccos[-sqrt(3/7)]
130.893395°
arccos(-3/4)
138.590378°
arccos[-3/sqrt(n(10-n))]
Dihedral angles
bir.s. - tr.demi.
arccos(-1/4)
104.477512°
arccos[-1/sqrt(5)]
116.565051°
arccos[-sqrt(3/8)]
127.761244°
arccos[-2/sqrt(7)]
139.106605°
arccos[-5/sqrt(32)]
152.114433°
arccos[-(n-3)/sqrt(4n)]
Dihedral angles
tr.Goss. - tr.Goss.
arccos(-1/4)
104.477512°
arccos(-1/3)
109.471221°
120°arccos[-1/(10-n)]
Dihedral angles
tr.Goss. - tr.demi.
arccos[-1/sqrt(5)]
116.565051°
120°arccos[-1/sqrt(3)]
125.264390°
135°arccos[-1/sqrt(10-n)]
Dihedral angles
tr.demi. - tr.demi.
arccos(1/4)
75.522488°
90°arccos(-1/4)
104.477512°
120°arccos(-3/4)
138.590378°
arccos[-(n-5)/4]

All-Ends ExpandedGossetic eEn   (up)
Dimension4D5D6D7D8DnD
Dynkin diagram
x3o3x3x
x3o3o3x *c3x
x3o3o3o3x *c3x
x3o3o3o3o3x *c3x
x3o3o3o3o3o3x *c3x
x3o...o3x *c3x
Acronym
prip
spat
spam
sethalq
spuffy
all-ends exp. En
Vertex Count60320216024192??
Facet Count
exp. simpl.
5co16spid72scad576staf?suph?
Facet Count
exp. Goss.
10trip16spid27siphin56hejak?shilq?
Facet Count
exp. Goss. pr.
216spiddip756siphinnip?hejakip?
Facet Count
duoprism I
4032traspid?trasiphin?
Facet Count
duoprism II
?tetspid?
Facet Count
dippip
80tisdip720tratrip10080tratepe?trippen?
Facet Count
exp. simpl. pr.
10hip40cope216spiddip2016scadip?staffip?
Facet Count
exp. demicube
5tut10rit27siphin126sochax?suthesa?
Circumradiussqrt(13/5)
1.612452
sqrt(7/2)
1.870829
sqrt(5)
2.236068
sqrt(8)
2.828427
sqrt(17)
4.123106
sqrt[(9+n)/(9-n)]
Inradius wrt.
exp. simpl.
sqrt(8/5)
1.264911
sqrt(5/2)
1.581139
2sqrt(7)
2.645751
4sqrt[2n/(9-n)]
Inradius wrt.
exp. Goss.
11/sqrt(60)
1.420094
sqrt(5/2)
1.581139
sqrt(27/8)
1.837117
4/sqrt(3)
2.309401
7/2
3.5
(15-n)/sqrt[2(10-n)(9-n)]
Inradius wrt.
exp. Goss. pr.
sqrt(15)/2
1.936492
7/sqrt(8)
2.474874
13/sqrt(12)
3.752777
(21-n)/sqrt[4(11-n)(9-n)]
Inradius wrt.
duoprism I
sqrt(20/3)
2.581989
??
Inradius wrt.
duoprism II
??
Inradius wrt.
dippip
4/sqrt(6)
1.632993
7/sqrt(12)
2.020726
13/sqrt(24)
2.653614
31/sqrt(60)
4.002083
(5n-9)/sqrt[12(n-3)(9-n)]
Inradius wrt.
exp. simpl. pr.
sqrt(27/20)
1.161895
3/2
1.5
sqrt(15)/2
1.936492
sqrt(27)/2
2.598076
sqrt(63)/2
3.968627
sqrt[(9n-9)/(36-4n)]
Inradius wrt.
exp. demicube
7/sqrt(40)
1.106797
sqrt(2)
1.414214
sqrt(27/8)
1.837117
5/2
2.5
11/sqrt(8)
3.889087
(n+3)/sqrt[8(9-n)]
Volume237 sqrt(5)/32
16.560878
142 sqrt(2)/3
66.939442
17811 sqrt(3)/80
385.619462
34715/8
4339.375
??
Surface[215 sqrt(2)+210 sqrt(3)]/12
55.648882
5 [23+40 sqrt(2)+
  +12 sqrt(3)+14 sqrt(5)]/3
219.430173
[2700+4203 sqrt(2)+
  +756 sqrt(3)+6300 sqrt(5)]/20
1202.029914
[19159+58842 sqrt(2)+
  +38962 sqrt(3)+4200 sqrt(6)+
  +1848 sqrt(7)+14700 sqrt(15)]/20
12098.418927
??
Dihedral angles
e.sim. - e.Goss.
arccos[-sqrt(3/8)]
127.761244°
arccos(-3/5)
126.869898°
arccos[-sqrt(3/8)]
127.761244°
arccos[-sqrt(3/7)]
130.893395°
arccos(-3/4)
138.590378°
arccos[-3/sqrt(n(10-n))]
Dihedral angles
e.sim. - e.Goss.p.
????
Dihedral angles
e.Goss. - e.Goss.p.
????
Dihedral angles
e.sim. - duop.I
???
Dihedral angles
e.Goss.p. - duop.I
???
Dihedral angles
e.sim. - duop.II
??
Dihedral angles
duop.I - duop.II
??
Dihedral angles
e.sim. - dippip
?????
Dihedral angles
duop.II - dippip
??
Dihedral angles
e.sim. - e.sim.p.
arccos[-sqrt(1/6)]
114.094843°
arccos[-sqrt(2/5)]
129.231520°
????
Dihedral angles
e.Goss. - e.sim.p.
arccos(-2/3)
131.810315°
arccos[-sqrt(2/5)]
129.231520°
????
Dihedral angles
e.Goss.p. - e.sim.p.
????
Dihedral angles
duop.I - e.sim.p.
???
Dihedral angles
duop.II - e.sim.p.
??
Dihedral angles
dippip - e.sim.p.
?????
Dihedral angles
e.sim. - e.demic.
arccos(-1/4)
104.477512°
arccos[-1/sqrt(5)]
116.565051°
arccos[-sqrt(3/8)]
127.761244°
arccos[-2/sqrt(7)]
139.106605°
arccos[-5/sqrt(32)]
152.114433°
arccos[-(n-3)/sqrt(4n)]
Dihedral angles
e.Goss. - e.demic.
arccos[-1/sqrt(5)]
116.565051°
120°arccos[-1/sqrt(3)]
125.264390°
135°arccos[-1/sqrt(10-n)]
Dihedral angles
e.Goss.p. - e.demic.
????
Dihedral angles
duop.I - e.demic.
???
Dihedral angles
duop.II - e.demic.
???
Dihedral angles
e.sim.p. - e.demic.
arccos[-sqrt(3/8)]
127.761244°
135°????

OmnitruncatedGossetic otEn   (up)
Dimension4D5D6D7D8DnD
Dynkin diagram
x3x3x3x
x3x3x3x *c3x
x3x3x3x3x *c3x
x3x3x3x3x3x *c3x
x3x3x3x3x3x3x *c3x
x3x...x3x3x *c3x
Acronym
gippid
gippit
gopam
gotanq
gupofy
omnitr. (n-4)2,1
Vertex Count1201920518402903040696729600?
Facet Count
wrt. type 1
5toe16gippid72gocad576gotaf17280guph?
Facet Count
wrt. type 2
10hip16gippid27gippit56gopam240gotanq?
Facet Count
wrt. type 3
10hip80shiddip216gippiddip756gippitip6720gopamp?
Facet Count
wrt. type 4
5toe40tope720hahip4032hagippid60480hagippit?
Facet Count
wrt. type 5
10tico216gippiddip2016gocadip241920toegippid?
Facet Count
wrt. type 6
27gippit10080hatope483840hagippiddip?
Facet Count
wrt. type 7
126gocog69120gotafip?
Facet Count
wrt. type 8
2160gotaz?
Circumradiussqrt(5)
2.236068
sqrt(15)
3.872983
sqrt(39)
6.244998
sqrt(399)/2
9.987492
sqrt(310)
17.606817
?
Inradius wrt.
facet type 1
sqrt(5/2)
1.581139
sqrt(10)
3.162278
11/2
5.5
sqrt(343)/2
9.260130
17?
Inradius wrt.
facet type 2
sqrt(15)/2
1.936492
sqrt(10)
3.162278
sqrt(24)
4.898980
sqrt(243)/2
7.794229
29/2
14.5
?
Inradius wrt.
facet type 3
sqrt(15)/2
1.936492
sqrt(27/2)
3.674235
sqrt(135)/2
5.809475
13/sqrt(2)
9.192388
sqrt(1083)/2
16.454483
?
Inradius wrt.
facet type 4
sqrt(5/2)
1.581139
7/2
3.5
sqrt(147)/2
6.062178
sqrt(375)/2
9.682458
sqrt(294)
17.146428
?
Inradius wrt.
facet type 5
sqrt(8)
2.828427
sqrt(135)/2
5.809475
sqrt(363)/2
9.526279
sqrt(605/2)
17.392527
?
Inradius wrt.
facet type 6
sqrt(24)
4.898980
sqrt(96)
9.797959
sqrt(1215)/2
17.428425
?
Inradius wrt.
facet type 7
17/2
8.5
sqrt(1183)/2
17.197384
?
Inradius wrt.
facet type 8
sqrt(529/2)
16.263456
?
Volume125 sqrt(5)/4
69.877124
?????
Surface??????
Dihedral angles
types 1 - 2
arccos[-sqrt(3/8)]
127.761244°
arccos(-3/5)
126.869898°
arccos[-sqrt(3/8)]
127.761244°
arccos[-sqrt(3/7)]
130.893395°
arccos(-3/4)
138.590378°
arccos[-3/sqrt(n(10-n))]
Dihedral angles
types 1 - 3
arccos[-sqrt(1/6)]
114.094843°
?????
Dihedral angles
types 1 - 4
arccos(-1/4)
104.477512°
arccos[-sqrt(2/5)]
129.231520°
????
Dihedral angles
types 1 - 5
arccos[-1/sqrt(5)]
116.565051°
????
Dihedral angles
types 1 - 6
arccos[-sqrt(3/8)]
127.761244°
???
Dihedral angles
types 1 - 7
arccos[-2/sqrt(7)]
139.106605°
??
Dihedral angles
types 1 - 8
arccos[-5/sqrt(32)]
152.114433°
?
Dihedral angles
types 2 - 3
arccos(-2/3)
131.810315°
?????
Dihedral angles
types 2 - 4
arccos(-1/4)
104.477512°
arccos[-sqrt(2/5)]
129.231520°
????
Dihedral angles
types 2 - 5
arccos[-1/sqrt(5)]
116.565051°
????
Dihedral angles
types 2 - 6
120°???
Dihedral angles
types 2 - 7
arccos[-1/sqrt(3)]
125.264390°
??
Dihedral angles
types 2 - 8
135°?
Dihedral angles
types 3 - 4
arccos[-sqrt(3/8)]
127.761244°
?????
Dihedral angles
types 3 - 5
?????
Dihedral angles
types 3 - 6
????
Dihedral angles
types 3 - 7
???
Dihedral angles
types 3 - 8
??
Dihedral angles
types 4 - 5
135°????
Dihedral angles
types 4 - 6
????
Dihedral angles
types 4 - 7
???
Dihedral angles
types 4 - 8
??
Dihedral angles
types 5 - 6
????
Dihedral angles
types 5 - 7
???
Dihedral angles
types 5 - 8
??
Dihedral angles
types 6 - 7
???
Dihedral angles
types 6 - 8
??
Dihedral angles
types 7 - 8
??


Some Axial Cases

Simplexial Ursatope Un  (up)

The name of theUrsatopes derives from the acronym of the 3D sequence member,teddi (J63), being homonym to the toy-bear, or Latinized "urs". The simplexial ones are defined generally as thebistratic lace towersofx3xoo3ooo...ooo3ooo&#xt, i.e. the n-dimensional simplexial ursatope Un can be described astherectified simplex rSn-1 atop thef-scaledregular simplexSn-1 atop the (unit) regular simplex Sn-1. All those ursatopes happen to beorbiformCRFs, i.e. are circumscribable, convex, and regular faced.

It could be mentioned here additionally that the simplexial ursatope Un generally is nothing but thevertex figure ofs3s4o3o...o3o, which for low dimensions is spherical, at rank 5 (i.e. 5 nodes) becomes aneuclidean tetracomb, and thereafter will belong tohyperbolic geometry. This then gets reflected too in the table below by the values of the circumradii of Un, which traverse unity at n=4.

Further thevertex figures of these polytopes could be described uniformely.At the lower 2 of its vertex types one hasox3oo...oo3oo&#f spike-like tall simplex pyramides,the top vertices however arexf xo...oo3oo&#x, i.e. simplex prism wedges, where the additionalwedge-edge has sizef and runs axis parallel to the base (simplex prism).

Dimension2D3D4D5DnD
Dynkin diagram
ofx&#xt
ofx3xoo&#xt
ofx3xoo3ooo&#xt
ofx3xoo3ooo3ooo&#xt
ofx3xoo3ooo...ooo3ooo&#xt
Acronym
peg
teddi
tetu
penu
simpl. n-ursatope
Vertex Count
top layer
13610n(n-1)/2
Vertex Count
medial layer
2345n
Vertex Count
bottom layer
2345n
Facet Count
top
1trig1oct1rap1
Facet Count
upper lacing
2line3trig4tet5penn
Facet Count
lower lacing
2line3peg4teddi5tetun
Facet Count
bottom
1line1trig1tet1pen1
Circumradiussqrt[(5+sqrt(5))/10]
0.850651
sqrt[(5+sqrt(5))/8]
0.951057
1sqrt[2+sqrt(5)]/2
1.029086
sqrt[((29n-22)+(13n-10) sqrt(5)) /
    ((22n+6)+(10n+2) sqrt(5))]
Inradius wrt.
top facet
sqrt[(7+3 sqrt(5))/24]
0.755761
1/sqrt(2)
0.707107
sqrt[(5 sqrt(5)-2)/20]
0.677508
?
Inradius wrt.
upper lacing
sqrt[(5+2 sqrt(5))/20]
0.688191
sqrt[(7+3 sqrt(5))/24]
0.755761
sqrt(5/8)
0.790569
sqrt[(1+3 sqrt(5))/12]
0.801468
?
Inradius wrt.
lower lacing
sqrt[(5+2 sqrt(5))/20]
0.688191
sqrt[(5+sqrt(5))/40]
0.425325
[sqrt(5)-1]/4
0.309017
sqrt[sqrt(5)-2]/2
0.242934
?
Inradius wrt.
bottom facet
sqrt[(5+2 sqrt(5))/20]
0.688191
sqrt[(7+3 sqrt(5))/24]
0.755761
sqrt(5/8)
0.790569
sqrt[(1+3 sqrt(5))/12]
0.801468
?
Volumesqrt[25+10 sqrt(5)]/4
1.720477
[15+7 sqrt(5)]/24
1.277186
[28+13 sqrt(5)]/96
0.594468
[11 sqrt(5 sqrt(5)-2)+2 sqrt(15+45 sqrt(5))+
  +(140+65 sqrt(5)) sqrt(sqrt(5)-2)]/960
0.201536
?
Surface5[5 sqrt(3)+3 sqrt(25+10 sqrt(5))]/4
7.326496
[30+9 sqrt(2)+14 sqrt(5)]/12
6.169406
[70+41 sqrt(5)]/48
3.368308
?
Dihedral angles
top - upper
108°
upper - upper
arccos(-sqrt(5)/3)
138.189685°
???
Dihedral angles
top - lower
???
Dihedral angles
lower - upper
108°arccos(-sqrt[(5-2 sqrt(5))/15])
100.812317°
???
Dihedral angles
lower - lower
arccos(1/sqrt(5))
63.434949°
???
Dihedral angles
lower - bottom
108°arccos(-sqrt[(5-2 sqrt(5))/15])
100.812317°
???
Dimension6D7D8D9DnD
Dynkin diagram
ofx3xoo3ooo3ooo3ooo&#xt
ofx3xoo3ooo3ooo3ooo3ooo&#xt
ofx3xoo3ooo3ooo3ooo3ooo3ooo&#xt
ofx3xoo3ooo3ooo3ooo3ooo3ooo3ooo&#xt
ofx3xoo3ooo...ooo3ooo&#xt
Acronym
hixu
hopu
ocu
enu
simpl. n-ursatope
Vertex Count
top layer
15212836n(n-1)/2
Vertex Count
medial layer
6789n
Vertex Count
bottom layer
6789n
Facet Count
top
1rix1ril1roc1rene1
Facet Count
upper lacing
6hix7hop8oca9enen
Facet Count
lower lacing
6penu7hixu8hopu9ocun
Facet Count
bottom
1hix1hop1oca1ene1
Circumradiussqrt[(13+5 sqrt(5))/22]
1.048383
sqrt[(25+9 sqrt(5))/40]
1.062128
sqrt[(20+7 sqrt(5))/31]
1.072418
sqrt[(29+10 sqrt(5))/44]
1.080411
sqrt[((29n-22)+(13n-10) sqrt(5)) /
    ((22n+6)+(10n+2) sqrt(5))]
Inradius wrt.
top facet
sqrt[(15 sqrt(5)-5)/66]
0.657601
sqrt[(63 sqrt(5)-25)/280]
0.643296
sqrt[(28 sqrt(5)-13)/124]
0.632519
sqrt[(90 sqrt(5)-47)/396]
0.624108
?
Inradius wrt.
upper lacing
sqrt[(23+30 sqrt(5))/132]
0.826099
sqrt[(55+63 sqrt(5))/280]
0.836387
sqrt[(103+112 sqrt(5))/496]
0.844144
sqrt[(85+90 sqrt(5))/396]
0.850202
?
Inradius wrt.
lower lacing
sqrt[(4-sqrt(5))/44]
0.200223
sqrt[(15-sqrt(5))/440]
0.170320
sqrt[(25+sqrt(5))/1240]
0.148204
sqrt[(19+2 sqrt(5))/1364]
0.131180
?
Inradius wrt.
bottom facet
sqrt[(23+30 sqrt(5))/132]
0.826099
sqrt[(55+63 sqrt(5))/280]
0.836387
sqrt[(103+112 sqrt(5))/496]
0.844144
sqrt[(85+90 sqrt(5))/396]
0.850202
?
Volume?????
Surface?????
Dihedral angles
top - upper
?????
Dihedral angles
top - lower
?????
Dihedral angles
lower - upper
?????
Dihedral angles
lower - lower
?????
Dihedral angles
lower - bottom
?????

Orthoplexial Ursatope oUn  (up)

The orthoplexialUrsatopes are defined generally as thebistratic lace towersofx3xoo3ooo...ooo3ooo4ooo&#xt, i.e. the n-dimensional orthoplexial ursatope oUn can be described astherectified orthoplex rOn-1 atop thef-scaledregular orthoplexOn-1 atop the (unit) regular orthoplex On-1. Nearly all those ursatopes happen to beorbiformCRFs, i.e. are circumscribable, convex, and regular faced. Only the 3D representant shows up external q-edges;none the less it still remains circumscribable.

Dimension3D4D5D6D7DnD
Dynkin diagram
ofx4qoo&#xt
(non-orbiform)
ofx3xoo4ooo&#xt
ofx3xoo3ooo4ooo&#xt
ofx3xoo3ooo3ooo4ooo&#xt
ofx3xoo3ooo3ooo3ooo4ooo&#xt
ofx3xoo3ooo...ooo4ooo&#xt
Acronym
--
octu
hexu
tacu
gu
orthopl. n-ursatope
Vertex Count
top layer
4122440602(n-1)(n-2)
Vertex Count
medial layer
46810122(n-1)
Vertex Count
bottom layer
46810122(n-1)
Facet Count
top
1q-square1co1ico1rat1rag1
Facet Count
upper lacing
4oq&#x6squippy8octpy10hexpy12tacpy2(n-1)
Facet Count
lower lacing
4peg8teddi16tetu32penu64hixu2n-1
Facet Count
bottom
1square1oct1hex1tac1gee1
Circumradiussqrt[3+sqrt(5)]/2
1.144123
sqrt[3+sqrt(5)]/2
1.144123
sqrt[3+sqrt(5)]/2
1.144123
sqrt[3+sqrt(5)]/2
1.144123
sqrt[3+sqrt(5)]/2
1.144123
sqrt[3+sqrt(5)]/2
1.144123
Inradius wrt.
top facet
sqrt[sqrt(5)-1]/2
0.555893
sqrt[sqrt(5)-1]/2
0.555893
sqrt[sqrt(5)-1]/2
0.555893
sqrt[sqrt(5)-1]/2
0.555893
sqrt[sqrt(5)-1]/2
0.555893
sqrt[sqrt(5)-1]/2
0.555893
Inradius wrt.
upper lacing
sqrt[1+sqrt(5)]/2
0.899454
sqrt[1+sqrt(5)]/2
0.899454
sqrt[1+sqrt(5)]/2
0.899454
sqrt[1+sqrt(5)]/2
0.899454
sqrt[1+sqrt(5)]/2
0.899454
sqrt[1+sqrt(5)]/2
0.899454
Inradius wrt.
lower lacing
sqrt[(5+3 sqrt(5))/20]
0.765121
sqrt[(1+sqrt(5))/8]
0.636010
sqrt[sqrt(5)-1]/2
0.555893
1/2
0.5
sqrt[(7+sqrt(5)/44]
0.458160
sqrt[(29+13 sqrt(5)) /
  ((22n-16)+(10n-8)sqrt(5))]
Inradius wrt.
bottom facet
sqrt[1+sqrt(5)]/2
0.899454
sqrt[1+sqrt(5)]/2
0.899454
sqrt[1+sqrt(5)]/2
0.899454
sqrt[1+sqrt(5)]/2
0.899454
sqrt[1+sqrt(5)]/2
0.899454
sqrt[1+sqrt(5)]/2
0.899454
Volume??????
Surface??????
Dihedral angles
top - upper
??????
Dihedral angles
top - lower
?????
Dihedral angles
lower - upper
??????
Dihedral angles
lower - lower
??????
Dihedral angles
lower - bottom
??????

Rectified Simplex Pyramid rSn-py   (up)

As such these polytopesoo3ox3oo...oo3oo&#x look just to be a mere similar concept to the pyramids on simplex base, which, for sure, as such are nothing but simplices of the next dimension themselves. However it happens that the demihypercube Dn, when seen as lace towerwith vertex first orientation, becomes generallyooo..-3-oxo..-3-ooo..-3-oox..-...-ooo..&#xt (n-1 node positions, n/2 or (n+1)/2 layers). Thence this very pyramid of consideration is nothing but the vertex pyramid thereof.

Below it is shown that the dihedral angle at the base decreases to zero with increasing dimension. This is what makes the possibilities to augment other polytopes with this component ever more likely, esp. the possibilities for higher dimensionalCRF would explode.

Dimension3D4D5D6DnD
Dynkin diagram
oo3ox&#x
oo3ox3oo&#x
oo3ox3oo3oo&#x
oo3ox3oo3oo&#x
oo3ox3oo...oo3oo&#x
Acronym
tet
octpy
rappy
rixpy
rect. n-simplex pyr.
Vertex Count1+31+61+101+151+n(n-1)/2
Facet Count
simpl. lacing
3trig4tet5pen6hixn
Facet Count
other lacing
4tet5octpy6rappyn
Facet Count
base
1trig1oct1rap1rix1
Circumradiussqrt(3/8)
0.612372
1/sqrt(2)
0.707107
sqrt(5/8)
0.790569
sqrt(3)/2
0.866025
sqrt(n/8)
Inradius wrt.
simpl. lacing
1/sqrt(24)
0.204124
1/sqrt(8)
0.353553
3/sqrt(40)
0.474342
1/sqrt(3)
0.577350
(n-2)/sqrt(8n)
Inradius wrt.
other lacing
1/sqrt(8)
0.353553
1/sqrt(8)
0.353553
1/sqrt(8)
0.353553
Inradius wrt.
base
1/sqrt(24)
0.204124
0-1/sqrt(40)
-0.158114
-1/sqrt(12)
-0.288675
-(n-4)/sqrt(8n)
Volumesqrt(2)/12
0.117851
1/12
0.833333
11 sqrt(2)/480
0.032409
13/1440
0.0090278
(2n-1-n)/(n! sqrt(2n-2))
Surfacesqrt(3)
1.732051
sqrt(2)
1.414214
???
Dihedral angles
simp. - other
arccos(1/3)
70.528779°
(simp. - simp.)
120°arccos[-1/sqrt(5)]
116.565051°
arccos[-1/sqrt(6)]
114.094843°
arccos[-1/sqrt(n)]
Dihedral angles
other - other
90°90°90°
Dihedral angles
simp. - base
arccos(1/3)
70.528779°
60°arccos(3/5)
53.130102°
arccos(2/3)
48.189685°
arccos[(n-2)/n]
Dihedral angles
other - base
60°arccos[1/sqrt(5)]
63.434949°
arccos[1/sqrt(6)]
65.905157°
arccos[1/sqrt(n)]
Heightsqrt(2/3)
0.816497
1/sqrt(2)
0.707107
sqrt(2/5)
0.632456
1/sqrt(3)
0.577350
sqrt(2/n)
Dimension7D8D9D10DnD
Dynkin diagram
oo3ox3oo3oo3oo3oo&#x
oo3ox3oo3oo3oo3oo3oo&#x
oo3ox3oo3oo3oo3oo3oo3oo&#x
oo3ox3oo3oo3oo3oo3oo3oo3oo&#x
oo3ox3oo...oo3oo&#x
Acronym
rilpy
rocpy
renepy
?
rect. n-simplex pyr.
Vertex Count1+211+281+361+451+n(n-1)/2
Facet Count
simpl. lacing
7hop8oca9ene10dayn
Facet Count
other lacing
7rixpy8rilpy9rocpy10renepyn
Facet Count
base
1ril1roc1rene1reday1
Circumradiussqrt(7/8)
0.935414
13/sqrt(8)
1.060660
sqrt(5)/2
1.118034
sqrt(n/8)
Inradius wrt.
simpl. lacing
5/sqrt(56)
0.668153
3/4
0.75
7/sqrt(72)
0.824958
2/sqrt(5)
0.894427
(n-2)/sqrt(8n)
Inradius wrt.
other lacing
1/sqrt(8)
0.353553
1/sqrt(8)
0.353553
1/sqrt(8)
0.353553
1/sqrt(8)
0.353553
1/sqrt(8)
0.353553
Inradius wrt.
base
-3/sqrt(56)
-0.400892
-1/2
-0.5
-5/sqrt(72)
-0.589256
-6/sqrt(80)
-0.670820
-(n-4)/sqrt(8n)
Volume19 sqrt(2)/13440
0.0019993
1/2688
0.00037202
247 sqrt(2)/5806080
0.000060163
251/29030400
0.0000086461
(2n-1-n)/(n! sqrt(2n-2))
Surface?????
Dihedral angles
simp. - other
arccos[-1/sqrt(7)]
112.207654°
arccos[-1/sqrt(8)]
110.704811°
arccos(-1/3)
109.471221°
arccos[-1/sqrt(10)]
108.434949°
arccos[-1/sqrt(n)]
Dihedral angles
other - other
90°90°90°90°90°
Dihedral angles
simp. - base
arccos(5/7)
44.415309°
arccos(3/4)
41.409622°
arccos(7/9)
38.942441°
arccos(4/5)
36.869898°
arccos[(n-2)/n]
Dihedral angles
other - base
arccos[1/sqrt(7)]
67.792346°
arccos[1/sqrt(8)]
69.295189°
arccos(1/3)
70.528779°
arccos[1/sqrt(10)]
71.565051°
arccos[1/sqrt(n)]
Heightsqrt(2/7)
0.534522
1/2
0.5
sqrt(2)/3
0.471405
1/sqrt(5)
0.447214
sqrt(2/n)


Some Duoprismatic Cases

Volumes of duoprisms A×B are easily calculated as the product of the subdimensional volumes of A resp. of B.Thus plain prisms (of unit height, for sure) have the same numeric volume value, as the subdimensional volume of its base.

Vertex counts of duoprisms A×B likewise are given as the product of the vertex counts of A resp. of B.


Simplex Duoprism Sn×Sn   (up)

This case results ineven dimensions only.

From the axial representation of one of the factors, i.e. of Sn,it becomes clear that Sn×Sn can well be representedas thesegmentotope of theregular simplex Snatop the simplex duoprism Sn×Sn-1.Thence, by means of thelace prism notation, Sn×Sn
x3o3o...o3o x3o3o...o3o (2n nodes) can be described as well asxx3oo3oo...oo3oo ox3oo...oo3oo&#x (2n-1 nodes).

It could be mentioned here additionally that the simplex duoprism Sn×Sn generally is nothing but thevertex figure of themid-rectified simplex mrS2n+1.

Dimension2D4D6D8D10D(2n)D
Dynkin diagram
x x
x3o x3o
x3o3o x3o3o
x3o3o3o x3o3o3o
x3o3o3o3o x3o3o3o3o
x3o...o3o x3o...o3o
Acronym
square
triddip
tetdip
pendip
hixdip
n-simplex duoprism
Vertex Count49162536(n+1)2
Facet Count4line6trip8tratet10tetpen12penhix2(n+1)
Circumradius1/sqrt(2)
0.707107
sqrt(2/3)
0.816497
sqrt(3)/2
0.866025
2/sqrt(5)
0.894427
sqrt(5/6)
0.912871
sqrt[n/(n+1)]
Inradius1/2
0.5
1/sqrt(12)
0.288675
1/sqrt(24)
0.204124
1/sqrt(40)
0.158114
1/sqrt(60)
0.129099
1/sqrt[2n(n+1)]
Volume13/16
0.1875
1/72
0.013889
5/9216
0.00054253
1/76800
0.000013021
(n+1)/[2n (n!)2]
Surface4sqrt(27)/2
2.598076
1/sqrt(6)
0.408248
5 sqrt(10)/576
0.027450
1/[256 sqrt(15)]
0.0010086
sqrt[(n+1)3/(n 22n-3 ((n-1)!)4)]
Dihedral angles
at Sn-1×Sn-1
90°90°90°90°90°90°
Dihedral angles
at Sn×Sn-2
60°arccos(1/3)
70.528779
arccos(1/4)
75.522488
arccos(1/5)
78.463041
arccos(1/n)



© 2004-2025
top of page

[8]ページ先頭

©2009-2025 Movatter.jp