| Acronym | toe (alt.: gratet) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| TOCID symbol | tO, tTT | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Name | truncatedoctahedron, omnitruncatedtetrahedron, great rhombitetratetrahedron, Voronoi cell of body-centered cubic (bcc)lattice, Kelvin's tetrakaidecahedron, Waterman polyhedron number 10 wrt. face-centered cubiclattice A3 centered at a lattice point, permutohedron of 4 elements, equatorial cross-section ofoct-firstthex | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| VRML |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Circumradius | sqrt(5/2) = 1.581139 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Inradius wrt. {4} | sqrt(2) = 1.414214 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Inradius wrt. {6} | sqrt(3/2) = 1.224745 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Vertex figure | [4,62] = qo&#h | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Snub derivation / VRML |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Vertex layers |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lace city in approx. ASCII-art | o q o o Q o (Q=2q)q Q Q qo Q o o q o | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
x u u x w x x w x u u x | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Coordinates | (2, 1, 0)/sqrt(2) & all permutations, all changes of sign | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Volume | 8 sqrt(2) = 11.313708 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Surface | 6+12 sqrt(3) = 26.784610 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| General of army | (is itself convex) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Colonel of regiment | (is itself locally convex – no other uniform polyhedral members) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Dual | tekah | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Dihedral angles |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Face vector | 24, 36, 14 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Confer |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| External links | | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Note that toe can be thought of as the externalblend of 1oct + 8tricues + 6squippies,cf. the rightSteward toroid K3 \ 4Q3(S3).Thisdecomposition is also described as the degeneratesegmentochoronxx3ox4oo&#xt.
The second picture shows how the volume of toe is intimely related to half the volume of thecube: each eighth is its vertex-first half.Moreover it displays the interrelation between the primitve cubic and the body-centered cubiclattice, resp. theirVoronoi honeycombs each: i.e.chon andbatch.
In 1887 LordKelvin conjectured that this tetrakaidecahedron was the best shape for packing equal-sized objects together to fill space with minimal surface area. But in 1994 he finally got kind of disproven, cf. Weaire, D. and Phelan, R. "A Counter-Example to Kelvin's Conjecture on Minimal Surfaces." Philos. Mag. Let. 69, 107-110, 1994.They presented acounter-example of a space-filling geometry with even smaller surface to volume ratio, thereby however using non-flat bounding manifolds.
Incidence matrix according toDynkin symbol
x3x4o. . . | 24 | 1 2 | 2 1------+----+-------+----x . . | 2 | 12 * | 2 0. x . | 2 | * 24 | 1 1------+----+-------+----x3x . | 6 | 3 3 | 8 *. x4o | 4 | 0 4 | * 6snubbed forms:β3x4o,x3β4o,s3s4o (or as mere facetingqQo oqQ Qoq&#zh),β3β4o
x3x4/3o. . . | 24 | 1 2 | 2 1--------+----+-------+----x . . | 2 | 12 * | 2 0. x . | 2 | * 24 | 1 1--------+----+-------+----x3x . | 6 | 3 3 | 8 *. x4/3o | 4 | 0 4 | * 6snubbed forms:s3s4/3o
x3x3x. . . | 24 | 1 1 1 | 1 1 1------+----+----------+------x . . | 2 | 12 * * | 1 1 0. x . | 2 | * 12 * | 1 0 1. . x | 2 | * * 12 | 0 1 1------+----+----------+------x3x . | 6 | 3 3 0 | 4 * *x . x | 4 | 2 0 2 | * 6 *. x3x | 6 | 0 3 3 | * * 4snubbed forms:β3x3x,x3β3x,β3β3x,β3x3β,s3s3s (or as mere facetingqQo oqQ Qoq&#zh),β3β3β
s4x3xdemi( . . . ) | 24 | 1 1 1 | 1 1 1--------------+----+----------+------demi( . x . ) | 2 | 12 * * | 1 1 0demi( . . x ) | 2 | * 12 * | 0 1 1sefa( s4x . ) | 2 | * * 12 | 1 0 1--------------+----+----------+------ s4x .♦ 4 | 2 0 2 | 6 * *demi( . x3x ) | 6 | 3 3 0 | *4 *sefa( s4x3x ) | 6 | 0 3 3 | * * 4starting figure:x4x3x
xuxux4ooqoo&#xt → all heights = 1/sqrt(2) = 0.707107({4}|| pseudo u-{4}|| pseudo (x,q)-{8}|| pseudo u-{4}|| {4})o....4o.... | 4 * * * * | 2 1 0 0 0 0 0 | 1 2 0 0 0.o...4.o... | * 4 * * * | 0 1 2 0 0 0 0 | 0 2 1 0 0..o..4..o.. | * * 8 * * | 0 0 1 1 1 0 0 | 0 1 1 1 0...o.4...o. | * * * 4 * | 0 0 0 0 2 1 0 | 0 0 1 2 0....o4....o | * * * * 4 | 0 0 0 0 0 1 2 | 0 0 0 2 1----------------+-----------+---------------+----------x.... ..... | 2 0 0 0 0 | 4 * * * * * * | 1 1 0 0 0oo...4oo...&#x | 1 1 0 0 0 | * 4 * * * * * | 0 2 0 0 0.oo..4.oo..&#x | 0 1 1 0 0 | * * 8 * * * * | 0 1 1 0 0..x.. ..... | 0 0 2 0 0 | * * * 4 * * * | 0 1 0 1 0..oo.4..oo.&#x | 0 0 1 1 0 | * * * * 8 * * | 0 0 1 1 0...oo4...oo&#x | 0 0 0 1 1 | * * * * * 4 * | 0 0 0 2 0....x ..... | 0 0 0 0 2 | * * * * * * 4 | 0 0 0 1 1----------------+-----------+---------------+----------x....4o.... | 4 0 0 0 0 | 4 0 0 0 0 0 0 |1 * * * *xux.. .....&#xt | 2 2 2 0 0 | 1 2 2 1 0 0 0 | * 4 * * *..... .oqo.&#xt | 0 1 2 1 0 | 0 0 2 0 2 0 0 | * * 4 * *..xux .....&#xt | 0 0 2 2 2 | 0 0 0 1 2 2 1 | * * * 4 *....x4....o | 0 0 0 0 4 | 0 0 0 0 0 0 4 | * * * *1oro....4o.... & | 8 * * | 2 1 0 0 | 1 2 0.o...4.o... & | * 8 * | 0 1 2 0 | 0 2 1..o..4..o.. | * * 8 | 0 0 2 1 | 0 2 1-------------------+-------+----------+------x.... ..... & | 2 0 0 | 8 * * * | 1 1 0oo...4oo...&#x & | 1 1 0 | * 8 * * | 0 2 0.oo..4.oo..&#x & | 0 1 1 | * * 16 * | 0 1 1..x.. ..... | 0 0 2 | * * * 4 | 0 2 0-------------------+-------+----------+------x....4o.... & | 4 0 0 | 4 0 0 0 |2 * *xux.. .....&#xt & | 2 2 2 | 1 2 2 1 | * 8 *..... .oqo.&#xt | 0 2 2 | 0 0 4 0 | * * 4
xxux3xuxx&#xt → all heights = sqrt(2/3) = 0.816497({6}|| pseudo (x,u)-{6}|| pseudo (u,x)-{6}|| {6})o...3o... | 6 * * * | 1 1 1 0 0 0 0 0 0 | 1 1 1 0 0 0.o..3.o.. | * 6 * * | 0 0 1 1 1 0 0 0 0 | 0 1 1 1 0 0..o.3..o. | * * 6 * | 0 0 0 0 1 1 1 0 0 | 0 0 1 1 1 0...o3...o | * * * 6 | 0 0 0 0 0 0 1 1 1 | 0 0 0 1 1 1--------------+---------+-------------------+------------x... .... | 2 0 0 0 | 3 * * * * * * * * | 1 1 0 0 0 0.... x... | 2 0 0 0 | * 3 * * * * * * * | 1 0 1 0 0 0oo..3oo..&#x | 1 1 0 0 | * * 6 * * * * * * | 0 1 1 0 0 0.x.. .... | 0 2 0 0 | * * * 3 * * * * * | 0 1 0 1 0 0.oo.3.oo.&#x | 0 1 1 0 | * * * * 6 * * * * | 0 0 1 1 0 0.... ..x. | 0 0 2 0 | * * * * * 3 * * * | 0 0 1 0 1 0..oo3..oo&#x | 0 0 1 1 | * * * * * * 6 * * | 0 0 0 1 1 0...x .... | 0 0 0 2 | * * * * * * * 3 * | 0 0 0 1 0 1.... ...x | 0 0 0 2 | * * * * * * * * 3 | 0 0 0 0 1 1--------------+---------+-------------------+------------x...3x... | 6 0 0 0 | 3 3 0 0 0 0 0 0 0 |1 * * * * *xx.. ....&#x | 2 2 0 0 | 1 0 2 1 0 0 0 0 0 | * 3 * * * *.... xux.&#xt | 2 2 2 0 | 0 1 2 0 2 1 0 0 0 | * * 3 * * *.xux ....&#xt | 0 2 2 2 | 0 0 0 1 2 0 2 1 0 | * * * 3 * *.... ..xx&#x | 0 0 2 2 | 0 0 0 0 0 1 2 0 1 | * * * * 3 *...x3...x | 0 0 0 6 | 0 0 0 0 0 0 0 3 3 | * * * * *1oro...3o... & | 12 * | 1 1 1 0 0 | 1 1 1.o..3.o.. & | * 12 | 0 0 1 1 1 | 0 1 2-----------------+-------+------------+------x... .... & | 2 0 | 6 * * * * | 1 1 0.... x... & | 2 0 | * 6 * * * | 1 0 1oo..3oo..&#x & | 1 1 | * * 12 * * | 0 1 1.x.. .... & | 0 2 | * * * 6 * | 0 1 1.oo.3.oo.&#x | 0 2 | * * * * 6 | 0 0 2-----------------+-------+------------+------x...3x... & | 6 0 | 3 3 0 0 0 |2 * *xx.. ....&#x & | 2 2 | 1 0 2 1 0 | * 6 *.... xux.&#xt & | 2 4 | 0 1 2 1 2 | * * 6
oqQ qoo4xux&#zxt → all existing heights = 0, Q = 2q = 2.828427o.. o..4o.. | 8 * * | 1 2 0 0 | 1 2 0.o. .o.4.o. | * 8 * | 0 2 1 0 | 1 2 0..o ..o4..o | * * 8 | 0 0 1 2 | 0 2 1----------------+-------+----------+------... ... x.. | 2 0 0 | 4 * * * | 0 2 0oo. oo.4oo.&#x | 1 1 0 | * 16 * * | 1 1 0.oo .oo4.oo&#x | 0 1 1 | * * 8 * | 0 2 0... ... ..x | 0 0 2 | * * * 8 | 0 1 1----------------+-------+----------+------oq. qo. ...&#zx | 2 2 0 | 0 4 0 0 | 4 * *... ... xux&#xt | 2 2 2 | 1 2 2 1 | * 8 *... ..o4..x | 0 0 4 | 0 0 0 4 | * * 2
© 2004-2025 | top of page |