Movatterモバイル変換


[0]ホーム

URL:


Site MapPolytopesDynkin DiagramsVertex Figures, etc.Incidence MatricesIndex

Segmentotopes

External
links
polytopewiki  

In 2000 Klitzing published[1] on segmentotopes in general resp. hisresearch on convex segmentochora in special. Segmentotopes are polytopes which bow to the following conditions:

The first condition shows that the circumradius is well defined. Moreover, in union withcondition 3 this implies that all 2D faces have to be regular. The sandwich type 2nd condition implies that all edges,which aren't contained completely within one of the hyperplanes, would join both, i.e. having onevertex each in either plane. Thence segmentotopes have to be monostratic. In fact,segmentotopes are the monostraticorbiforms. (Orbiforms, a terminus which had been created several years later only, just use the first and third condition of those.)Finally it follows, that the bases have to be orbiforms, while all the lacing elements have to be (lower dimensional) segmentotpes.

The naming of individual segmentotopes usually is based on the 2 base polytopes: top-base polytopeatopbottom-base polytope. Symbolically one uses the parallelness of those bases: Ptop || Pbottom.(For the smaller segmentotopes the choice of bases need not be unique.)

Segmentotopes are closely related tolace prisms. In fact those concepts have a large common intersection,but they are not identical. While lace prisms need an axis of symmetry (in fact one which is describable as Dynkin symbol), one uses the terminus "axis" in the context of segmentotopes only in the sense of the line defined by the centers of the circumspheres of d-1 dimensional bases. (Thus the topic ofaxial polytopes does more relate to lace towers (asmultistratic generalizations of lace prisms) than to segmetotopes. None the less there is a large overlap.)– Note that the radius R of the d-1 dimensional circumsphere used for a segmentotpal base of dimension d-k might well be larger than the radiusr of its d-k dimensional circumsphere: for k > 1 the latter might well be placed within the former with some additional shifts:  R2 = r2 + s2. For a simple example just considersquippy, the 4-fold pyramid,which is just half of anoct, when being considered asline ||triangle: the subdimensional base,the single edge, there is placed off-set.

In fact, letrk be the individual circumradii of the bases, letsk be the respective shifts away from the axis(if subdimensional), leth be the axial height andR the global circumradius, then we have the following interrelation formulabetween all these sizes  4 R2 h2 = ((r22+s22)-(r12+s12))2 + 2 ((r12+s12)+(r22+s22)) h2 + h4.



Convex Segmentochora   (up)

Just as polytopes are distinguished dimensionally as polygons, polyhedra, polychora, etc.so too are segmentotopes.
The onlysegmentogons (without any further adjectivic restriction) clearly are

Segmentohedra already include infinite series like

(*) Grünbaumian bottom base understood to be withdrawn.
For convex ones d clearly has to be 1 and several of the above series then become finite.

Polychora generally have the disadvantage not being visually accessible.Segmentochora are not so hard for that:Just consider the 2 base polyhedra displayed concentrically, perhaps slightly scaled, while the lacings thenget slightly deformed. Mathematically speaking, axial projections (view-point at infinity) and central projections (finite view-point),either one being taken on the axis for sure, from 4D onto 3D generally are well "viewable" for such monostratic figures. Especially when using real 3D graphics (like the here used VRMLs) instead of further projections onto 2D as in usual pictures: Note that all pictures at "segmentochoron display" within individual polychoron files will be linked to such VRML files.

Color coding of the following pictures:

fore colorback colorexplanation

red

-

Ptop

blue

-

Pbottom

gold

-

lacing edges

-

white

spherical geometry

-

light yellow

euclidean geometry – cf. also:decompositions

-

light green

hyperbolic geometry

Cases with Tetrahedral Axis:


Cases with Octahedral Axis:


Cases with Icosahedral Axis:


Cases with n-Prismatic or n-Antiprismatic Axis:
ortho n-gonn-prismgyrated n-prism2n-prismn-antiprism 
 pt || n-p
(prism pyramids)
  pt || n-ap
(antiprism pyramids)
point
line || ortho n-gon
(scalenes)
line || n-p
(pyramid prisms)
   line segment
 n-g || n-p
(3,n-duoprisms)
n-g || gyro n-p
(antifastegia)
n-g || 2n-p
(magnabicupolic rings,
pucofastegia)
n-g || n-ap
(= n-g || gyro n-p)
n-gon
 2n-g || n-p
(orthobicupolic rings,
cupofastegia)
  2n-g || n-ap
(gyrobicupolic rings)
2n-gon
 n-p || n-p
(4,n-duoprisms)
n-p || gyro n-p
(antiprism prisms)
n-p || 2n-p
(n-cupola prisms)
 n-prism
   2n-p || 2n-p
(4,2n-duoprisms)
 2n-prism
    n-ap || n-ap
(= n-p || gyro n-p)
n-antiprism


Non-Lace-Prismatics:

Just as already often was used within the set ofJohnson solids, several of the above segmentochora allowdiminishings too. Those generally break some symmetries of one or both bases, and therefore too of the axial symmetry.Thus there is no longer a unifying symmetry according to which aDynkin symbol could be designed,being the premise for lace prisms.Even though, such diminished ones are fully valid segmentotopes (following the above 3 conditions). An easy 3D example could be againline ||triangle,the alternate description of the above mentionedsquippy. The easiest 4D one clearly issquasc (i.e. the 1/4-lune of thehex).–Gyrations in some spare cases might apply as well,although those in general would conflict to the requirement of exactly 2 vertex layers.

But there is also a generic non-lace-prismatic convex segmentochoron with octahedral symmetry at one base,with icosahedral symmetry at the other. (The common subsymmetry clearly is the pyrital. But that one does not bow to Dynkin symbol description.)That one uses as faces 1cube (as bottom base), 6trip (asline ||square), 12squippy (astriangle ||line),8tet (astriangle ||point), and1ike (as top base).




Full Table:
CircumradiusSegmentochoron
0.632456
K-4.1pen = pt || tet        (regular)K-4.1.1= line || perp {3}
0.707107
K-4.2hex = tet || dual tet     (regular)K-4.3octpy = pt || oct         (segment ofhex)K-4.3.1= {3} || gyro tetK-4.4squasc = pt || squippy    (luna ofhex)K-4.4.1= line || tetK-4.4.2= {3} || incl {3}K-4.4.3= line || perp {4}
0.774597
K-4.5rap = tet || oct            (uniform)K-4.6traf = tet || squippy       (segment ofrap)K-4.6.1= {3} || octK-4.6.2= {3} || gyro tripK-4.7trippy = line || squippy    (segment ofrap)K-4.7.1= {3} || tetK-4.7.2= pt || tripK-4.7.3= {3} || otho {4}   (where 1 {3}-edge || 2 {4}-edges)K-4.8bidrap = {3} || squippy     (wedge ofrap)K-4.8.1= {4} || tetK-4.8.2= line || ortho trip
0.790569
K-4.9tepe = tet || tet        (uniform)K-4.9.1= line || para tripK-4.9.2= {4} || ortho {4}
0.816497
K-4.10triddip = {3} || trip         (uniform)K-4.11ope = oct || oct              (uniform)K-4.11.1= trip || gyro tripK-4.12squippyp = squippy || squippy (segment ofope)K-4.12.1= {4} || tripK-4.12.2= line || cubeK-4.13digytpuf = trip || refl ortho trip (gyratedope)
0.879465
K-4.14squaf = {4} || squap     (wedge ofoct || cube)K-4.14.1= {4} || gyro cubeK-4.15octacube = oct || cubeK-4.16squippy || gyro cubeK-4.17squappy = {4} || gyro squippyK-4.17.1= pt || squap
0.866025
K-4.18tisdip = trip || trip (uniform)K-4.18.1= {4} || cube
0.962692
K-4.19squappip = squap || squap    (uniform)K-4.19.1= cube || gyro cube
1
K-4.20tes = cube || cube       (regular)K-4.21cubaike = cube || ikeK-4.22paf = {5} || papK-4.22.1= {5} || gyro pipK-4.23tetaco = tet || co       (segment ofspid)K-4.24tet || tricu             (luna ofspid)K-4.25tricuf = {3} || tricu    (luna ofspid)K-4.25.1= {6} || tripK-4.26cubpy = {4} || squippy   (segment ofico)K-4.26.1= pt || cubeK-4.27traw = {3} || gyro tricu (luna ofico)K-4.27.1= {6} || octK-4.28bidoctaco = {4} || co    (wedge ofico)K-4.29octaco = oct || co       (segment ofico)K-4.30octatricu = oct || tricu (luna ofico)K-4.31squippiaco = squippy || coK-4.32squippiatricu = squippy || tricuK-4.33trateddi = {3} || teddi
1.028076
K-4.34trapedip = {5} || pip (uniform)
1.031784
K-4.35cubaco = cube || co
1.074481
K-4.36ipe = ike || ike             (uniform)K-4.37gyepippip = gyepip || gyepipK-4.38peppyp = peppy || peppyK-4.38.1= line || pipK-4.39pappip = pap || papK-4.39.1= pip || gyro pipK-4.40mibdip = mibdi || mibdiK-4.41teddipe = teddi || teddi
1.106168
K-4.42squipdip = pip || pip (uniform)
1.118034
K-4.43cope = co || co          (uniform)K-4.44tobcupe = tobcu || tobcuK-4.45tricupe = tricu || tricuK-4.45.1= trip || hip
1.130454
K-4.46haf = {6} || hapK-4.46.1= {6} || gyro hip
1.154701
K-4.47thiddip = {6} || hip (uniform)
1.183216
K-4.48coatut = co || tutK-4.49tobcuatut = tobcu || tutK-4.50tricuatut = tricu || tutK-4.51tripuf = {6} || tricuK-4.51.1= {3} || hipK-4.52octatut = oct || tut
1.197085
K-4.53happip = hap || hap      (uniform)K-4.53.1= hip || gyro hip
1.224745
K-4.54shiddip = hip || hip  (uniform)K-4.55tuta = tut || inv tut (segment ofrit)K-4.56tetatut = tet || tut  (segment ofrit)
1.274755
K-4.57tuttip = tut || tut (uniform)
1.409438
K-4.58oaf = {8} || oapK-4.58.1= {8} || gyro op
1.428440
K-4.59todip = {8} || op (uniform)
1.433724
K-4.60sniccup = snic || snic (uniform)
1.447009
K-4.61coasirco = co || sircoK-4.62coaescu = co || escuK-4.63coaop = co || opK-4.64squaw = {4} || gyro squacuK-4.64.1= {8} || squap
1.463603
K-4.65oappip = oap || oap    (uniform)K-4.65.1= op || gyro op (uniform)
1.48563
K-4.66sircope = sirco || sirco  (uniform)K-4.67   esquigybcupe = esquigybcu || esquigybcuK-4.68escupe = escu || escuK-4.69squacupe = squacu || squacuK-4.69.1= cube || opK-4.70sodip = op || op          (uniform)K-4.71cubasirco = cube || sirco (segment ofsidpith)K-4.72   cube || esquibcuK-4.73squicuf = {4} || squacu   (wedge ofsidpith)K-4.73.1= {8} || cube
1.487792
K-4.74dope = doe || doe (uniform)
1.582890
K-4.75sircoatoe = sirco || toe
1.612452
K-4.76tutatoe = tut || toe (segment ofprip)
1.618034
K-4.77doaid = doe || idK-4.78ikadoe = ike || doe        (segment ofex)K-4.79   gyepip || doeK-4.80pappy = {5} || gyro peppyK-4.80.1= pt || papK-4.81papadoe = pap || doeK-4.82mibdiadoe = mibdi || doeK-4.83teddi adoe = teddi || doeK-4.84ikepy = pt || ike          (segment ofex)K-4.85   gyepippy = pt || gyepipK-4.86peppypy = pt || peppy      (wedge ofex)K-4.86.1= line || perp {5}K-4.87mibdipy = pt || mibdiK-4.88teddipy = pt || teddi
CircumradiusSegmentochoron
1.658312
K-4.89tope = toe || toe (uniform)
1.693527
K-4.90iddip = id || id (uniform)K-4.91   pobrope = pobro || pobroK-4.92perope = pero || pero
1.702385
K-4.93   daf = {10} || dapK-4.93.1     = {10} || gyro dip
1.717954
K-4.94tradedip = {10} || dip (uniform)
1.732051
K-4.95coatoe = co || toe (segment ofrico)
1.747560
K-4.96dappip = dap || dap      (uniform)K-4.96.1= dip || gyro dip
1.765796
K-4.97squadedip = dip || dip (uniform)
1.785406
K-4.98toatic = toe || tic
1.847759
K-4.99ticcup = tic || tic      (uniform)K-4.100sircoatic = sirco || tic (segment ofsrit)K-4.101   esquigybcu || ticK-4.102   sircoagytic = sirco || gyro ticK-4.103   escu || ticK-4.104   escu || gyro ticK-4.105squipuf = {8} || squacu  (segment ofsrit)K-4.105.1= {4} || opK-4.106opatic = op || tic       (segment ofsrit)K-4.107octasirco = oct || sirco (segment ofspic)K-4.108   squippy || escuK-4.109squippy || squacu
2.213060
K-4.110sniddip = snid || snid (uniform)
2.288246
K-4.111sriddip = srid || srid    (uniform)K-4.112   gyriddip = gyrid || gyridK-4.113   pabgyriddip = pabgyrid || pabgyridK-4.114   mabgyriddip = mabgyrid || mabgyridK-4.115   tagyriddip = tagyrid || tagyridK-4.116   diriddip = dirid || diridK-4.117pecupe = pecu || pecuK-4.117.1= pip || dipK-4.118   pagydriddip = pagydrid || pagydridK-4.119   magydriddip = magydrid || magydridK-4.120   bagydriddip = bagydrid || bagydridK-4.121   pabidriddip = pabidrid || pabidridK-4.122   mabidriddip = mabidrid || mabidridK-4.123   gybadriddip = gybadrid || gybadridK-4.124   tedriddip = tedrid || tedrid
2.370932
K-4.125gircope = girco || girco (uniform)
2.485450
K-4.126sridati = srid || ti
2.527959
K-4.127tipe = ti || ti (uniform)
2.613126
K-4.128ticagirco = tic || girco (segment ofproh &srico)K-4.129coatic = co || tic       (segment ofsrico)
3.011250
K-4.130tiddip = tid || tid (uniform)
3.077684
K-4.131idasrid = id || srid (segment ofrox)K-4.132   id || dridK-4.133paw = {5} || gyro pecuK-4.133.1= {10} || papK-4.134   id || pabidridK-4.135   id || mabidridK-4.136   id || tedridK-4.137ikaid = ike || id    (segment ofrox)K-4.138   gyepip || idK-4.139peppia pero = peppy || peroK-4.140gyepipa pero = gyepip || peroK-4.141pippy = {5} || peppy (segment ofrox)K-4.141.1= pt || pipK-4.142papaid = pap || idK-4.143   mibdi || idK-4.144   pap || peroK-4.145   mibdi || peroK-4.146{5} || peroK-4.147teddi aid = teddi || idK-4.148   teddi || pero
3.498949
K-4.149toagirco = toe || girco (segment ofprico)
3.835128
K-4.150griddip = grid || grid (uniform)K-4.151tiatid = ti || tid
5.236068
K-4.152doasrid = doe || srid (segment ofsidpixhi)K-4.153   doe || dridK-4.154pecuf = {5} || pecu   (wedge ofsidpixhi)K-4.154.1= {10} || pipK-4.155doa pabidrid = doe || pabidridK-4.156   doe || mabidridK-4.157   doe || tedrid
6.073594
K-4.158idati = id || ti (segment ofsrix)
6.735034
K-4.159sridatid = srid || tid (segment ofsrahi)K-4.160   gyrid || tidK-4.161   pabgyrid || tidK-4.162   mabgyrid || tidK-4.163   tagyrid || tidK-4.164   drid || tidK-4.165pepuf = {10} || pecu   (segment ofsrahi)K-4.165.1= {5} || dipK-4.166   pagydrid || tidK-4.167   magydrid || tidK-4.168   bagydrid || tidK-4.169   pabidrid || tidK-4.170   mabidrid || tidK-4.171   gybadrid || tidK-4.172   tedrid || tid
9.744610
K-4.173tidagrid = tid || grid (segment ofprix)
...
K-4.174n-af = {n} || n-apK-4.174.1= {n} || gyro n-p
...
K-4.1753,n-dip = {n} || n-p (uniform)
...
K-4.176n-appip = n-ap || n-ap    (uniform)K-4.176.1= n-p || gyro n-p
...
K-4.1774,n-dip = n-p || n-p (uniform)

(For degenerate segmentochora, i.e. having zero heights, cf. page "finite flat complexes".)


Close Relatives:
  1. In 2012 two sets of closely related monostratic polytopes where found:

    In fact the constraint, of the lacing edges all having unit lengths too, results in some specific shift values for the base polyhedra.As those base polyhedra on the other hand are not degenerate, this conflicts to having a common circumsphere in general: within thecase of pyramids only the special value n=3 results in a true convex segmentochoron (being thehex), within thecase of cupolae only the special value n=2 results in a true convex segmentochoron (beingtrip || refl ortho trip).Even though, the values n=3,4,5 resp. n=2,3,4,5 would well generate monostratic convex regular-faced polychora (CRFs).

    The closeness even could be pushed on a bit. If one of the (equivalent) bases each, which are segmentohedra in turn, would be diminished by omitting the smaller top face, i.e. maintaining therefrom only the larger bottom face, those would re-enter the range of valid segmentochora again:{n} || gyro n-py resp.{2n} || n-cu. In fact, here the necessary shifts of the bases could be assembled at the degenerate base alone. There a non-zero shift is known to be allowed.

    Without narrowing those findings, those 2 families could be de-mystified a bit by using different axes: the pyramidal case is nothing but the bipyramid of the n-antiprism, while the cupolaic case is nothing but the bistratic lace towerxxo-n-oxx oxo&#xt.

    Later the author realised also the existance of their ortho counterparts:

    Again those can be splitted at their now always prismatic pseudofacial equatorFor the pyramidal ones, the case n=2 becomes subdimensional, there representing nothing but theoct.The general case here is nothing but the n-prismatic bipyramid.For the cupolaic case N=2 clearly is full dimensional, but pairs of containedsquippies becomecorealmic and thus unite intoocts. Therefore that case happens to become nothing butope.

  2. In 2014 three close relatives to pyramids have been found, which are not orbiform just because their base is not. Those areline || bilbiro,{3} || thawro, resp.{5} || pocuro. A further such case would beline || esquidpy.

  3. Besides of considering 2 parallel hyperplanes cutting out monostratic layers of larger polychora, in 2012 (and more deeply in 2013) considerations about 2 intersecting equatorial hyperplanes were done. Those clearly cut out wedges. The specific choice of those hyperplanesmade up the terminuslunae. Only theCRF ones were considered. The followinglunae are known so far:

  4. Surely the convexity restriction could be released. Some3D examples can be found on the page onaxials.
    Some4D cases would be e.g.
  5. By means of externalblends at the bases multistratic stacks can be derived, right in the sense oflace towers. But in general,orbiformitythereby is lost. Only few are known, which then still are. Among those clearly are the ones which can be deduced asmultistratic segments of uniform or evenscaliform polytopes. But there arealso rare exceptional finds beyond those, e.g.

Further Reading



---- 5D----

(Just some) Convex Segmentotera   (up)

CircumradiusSegmentoteron
0.645497
hix = pt || pen        (regular)= line || perp tet= {3} || perp {3}
0.707107
tac = pen || dual pen     (regular)hexpy = pt || hex         (segment oftac)octasc = line || perp oct (lune oftac)squete = {3} || perp {4}  (wedge oftac)
0.790569
hin = hex || gyro hex         (uniform)rappy = pt || rap             (segment ofhin)trafpy = pt || traf           (wedge ofhin                               segment ofrappy)bidrappy = pt || bidrap       (segment ofhin)trippasc = line || perp trip  (segment ofhin)editetaf = line || tepe       (segment ofhin)tetaf = tet || inv tepe       (segment ofhin)= tet || hexditetaf = {3} || gyro tepe    (wedge ofhin)= pen || gyro tripsquasquasc = {4} || squasc    (wedge ofhin)tedhin = {4} || hex           (wedge ofhin)bidhin = oct || hex           (wedge ofhin)= tet || inv rapdihin = pen || inv rap        (segment ofhin)nibdihin = pen || inv traf    (wedge ofhin)triddaf = trip || bidual trip (wedge ofhin)
0.806226
penp = pen || pen        (uniform)= line || tepe= {4} || ortho trip
0.816497
rix = pen || rap                    (uniform)tepepy = pt || tepe                 (segment ofrix)octatepe = oct || tepe              (segment ofrix)bidrix = pen || bidrap              (segment ofrix)= squippy || ortho tepetedrix = {4} || lacing-ortho ( {4} || lacing-ortho {4} )= {4} || ortho tepe          (wedge ofrix)trial triddip = {3} || gyro triddip (segment ofrix)
0.841625
tratet = tet || tepe               (uniform)= {3} || triddip= trip || lacing-ortho trip
0.866025
hexip = hex || hex                      (uniform)= tepe || inv. tepeoctpyp = line || ope                    (segment ofhexip)= octpy || octpysquascop = {4} || part. ortho cube      (segment ofhexip)= squasc || squascdot = rap || inv rap                    (uniform)triddippy = pt || triddip               (segment ofdot)tetcubedaw = {2}-ap || axis-ortho {4}-p (lune ofdot)teta ope = tet || ope                   (segment ofdot)= oct || raptaope = {3} || ope                      (wedge ofdot)tridafup = triddip || bidual triddip    (segment ofdot)teddot = bidrap || gyro-inv bidrap      (diminishing ofdot)
0.895420
squiddaf = {4}-prism || bidual {4}-prism (scaliform)cubaope = cube || ope
0.912871
troct = oct || ope              (uniform)= triddip || gyro triddiptisquippy = {3} || tisdip       (segment oftroct)          = trip || triddip
0.921954
rappip = rap || rap          (uniform)= ope || tepetraffip = trip || inv tisdip (segment ofrappip)tepacube = tepe || cube      (wedge ofrappip)
0.935414
squatet = tepe || tepe              (uniform)= {4} || tisdip= cube || lacing-ortho cube
0.957427
tratrip = trip || tisdip     (uniform)= triddip || triddip
1
squoct = ope || ope                         (uniform)= tisdip || {3}-gyro tisdipsquasquippy = {4} || tes                    (segment ofsquoct)cubasquasc = cube || squasc                 (segment oftraltisdip)traltisdip = {3} || gyro tisdiptisdipah = tisdip || {6}hexaico = hex || ico                        (segment ofrat)rapaspid = rap || spid                      (segment ofrat)opepy = pt || ope                           (segment ofrat)squippyippy = pt || squippyp                (segment ofrat)= line || cubpyhexaco = hex || co                          (lune ofrat)rapaco = rap || co                          (lune ofrat)octpy || octaco                             (lune ofrat)opeaco = ope || co                          (segment ofrat)opeah = ope || {6}                          (wedge ofrat)tripgytricudaw = trip || ortho-gyro tricu   (wedge ofrat)oct-first lune of rat = rap || tetaco       (lune ofrat)tet-first lune of rat = hex || octaco       (lune ofrat)= rap || alt. tetacopenatrip = pen || trip                      (wedge ofscad)penaspid = pen || spid                      (segment ofscad)tepaco = tepe || co                         (lune ofscad)pexhix = trip || axis-ortho base-para tricu (wedge ofscad)
1.014647
piddaf = pip || bidual pip
1.040833
tracube = cube || tes      (uniform)= tisdip || tisdip
1.048144
petet = {5} || trapedip         (uniform)= pip || lacing-ortho pip
1.050501
icoap = ico || dual ico (scaliform)coates = co || tesicates = tes || icotessap = hex || tes{4} || gyro tes         (wedge oftessap)
1.106168
poct = trapedip || {3}-gyro trapedip (uniform)
1.112583
trike = ike || ipe (uniform)
1.118034
pent = tes || tes        (regular)icope = ico || ico       (uniform)opeacope = ope || cope   (segment oficope)cubpyp = line || tes     (segment oficope)trawp = ope || hip       (wedge oficope)= traw || trawspiddip = spid || spid   (uniform)tepeacope = tepe || cope (segment ofspiddip)tricufip = hip || tisdip= tricuf || tricuf
1.120019
cubacope = cube || cope
1.143215
trapip = pip || squipdip      (uniform)= trapedip || trapedip
1.154701
traco = co || cope            (uniform)tritricu = triddip || thiddip (segment oftraco)
1.172604
hatet = {6} || thiddip          (uniform)= hip || lacing-ortho hippexhix = {6} || triddip
1.185120
squike = ipe || ipe (uniform)
1.190238
opeatut = ope || tut            (wedge ofspix)copatut = cope || tut           (wedge ofspix)rapatut = rap || tut            (wedge ofspix)rapalsrip = rap || inv srip     (segment ofspix)spidasrip = spid || srip        (segment ofspix)tetacope = tet || cope          (segment ofspix)triddipa hip = {3} || tricupe   (wedge ofspix)= trip || tripuf= triddip || hiptripa thiddip = {6} || tricupe  (wedge ofspix)= trip || thiddippabex hix = thiddip || antipara thiddip (scaliform)triddip althiddip = triddip || gyro thiddip
1.213922
pecube = squipdip || squipdip (uniform)
1.224745
octhipdaw = {3}-ap || axis-ortho {6}-phoct = thiddip || {3}-gyro thiddip (uniform)hisquippy = {6} || shiddip         (segment ofhoct)squaco = cope || cope              (uniform)squatricu = tisdip || shiddip      (segment ofsquaco)          = tricupe || tricupeicarit = ico || rit            (segment ofnit)octco tuttric = octaco || tut  (wedge ofnit)= oct || coatut= co || octatutrapasrip = rap || srip         (segment ofnit)pabdinit = srip || inv srip    (scaliform,                                segment ofnit)octacope = oct || cope         (segment ofnit)trial tricupe = {3} || tricupe (wedge ofnit)tisdippy = pt || tisdip        (segment ofnit)ica tutcup = ico || tuta       (segment ofnit)coa tutcup = co || tuta        (wedge ofnit)coarit = co || rit             (wedge ofnit)
1.227160
tessarit = tes || rit
1.258306
trahip = thiddip || thiddip (uniform)= hip || shiddip
1.274755
tepatut = tepe || tut         (wedge ofsiphin)tutaf = tut || inv tuttip     (wedge ofsiphin)tutas = tuta || alt. tuta     (scaliform,                               segment ofsiphin)rita = rit || gyro rit        (scaliform,                               segment ofsiphin)hexalrit = hex || gyro rit    (segment ofsiphin)octa tutcup = oct || tutatripalhip = trip || lacing-ortho hiptetco tuttric = tet || coatut (segment ofpenasrip)= co || tetatut= tut || tetacopenasrip = pen || sripspidatip = spid || tipsripaltip = srip || inv tip
1.284523
srippip = srip || srip        (uniform)opeatuttip = ope || tuttip    (segment ofsrippip)copea tuttip = cope || tuttip (segment ofsrippip)tripufip = trip || shiddip    (wedge ofsrippip)         = tripuf || tripuf
1.290994
rapatip = rap || tip        (segment ofsarx)sripatip = srip || tip      (segment ofsarx)coatuttip = co || tuttip    (segment ofsarx)trathiddip = {3} || thiddip (segment ofsarx)
1.302772
pepip = pedip || pedip (uniform)
1.307032
tratut = tut || tuttip (uniform)
CircumradiusSegmentoteron
1.322876
hacube = shiddip || shiddip      (uniform)rittip = rit || rit              (uniform)tutcupip = tuttip || inv tuttip  (segment ofrittip)= tuta || tutatepeatuttip = tepe || tuttip     (segment ofrittip)= tetatut || tetatut
1.360147
tippip = tip || tip (uniform)
1.369306
squatut = tuttip || tuttip (uniform)
1.414214
pennatip = pen || tip       (segment ofrin)tipadeca = tip || deca      (segment ofrin)octatuttip = oct || tuttip  (segment ofsibrid)sripadeca = srip || deca    (half ofsibrid)hatricu = thiddip || hiddip (half ofhaco)
1.442951
otet = {8} || todip          (uniform)= op || lacing-ortho op
1.462497
trasnic = snic || sniccup (uniform)
1.485633
owoct = todip || {3}-gyro todip (uniform)
1.5
decap = deca || deca (uniform)
1.502958
rita sidpith = rit || sidpithsirco acope = sirco || cope
1.513420
trasirco = sirco || sircope (uniform)
1.515539
tradoe = doe || dope (uniform)
1.518409
squasnic = sniccup || sniccup (uniform)
1.567516
ocube = sodip || sodip         (uniform)squasirco = sircope || sircope (uniform)sidpithip = sidpith || sidpith (uniform,                                segment ofscant)squicuffip = squicuf || squicuf (wedge ofsidpithip)= tes || op
1.569562
squadoe = dope || dope (uniform)
1.583946
toa sircope = toe || sircope
1.618035
idadope = id || dope
1.620185
ritag thex = rit || gyro thex (segment ofsirhin)thexa = thex || gyro thex     (scaliform,                               segment ofsirhin)teta tuttip = tet || tuttip   (segment ofsirhin)rapadeca = rap || deca        (segment ofsirhin)deca aprip = deca || prip     (segment ofsirhin)tutcupa toe = tuta || toe     (wedge ofsirhin)
1.632993
tipalprip = tip || inv prip (segment ofcappix)tuttipa toe = tuttip || toe (wedge ofcappix)
1.658312
triddippa hiddip = trddip || hiddip (segment ofcard)pripa = prip || inv prip            (segment ofcard)sripaprip = srip || prip            (segment ofcard)thexip = thex || thex               (uniform)
1.683251
tratoe = toe || tope (uniform)
1.688194
prippip = prip || prip            (uniform)tuttipa tope = tuttip || tope     (segment ofprippip)             = tutatoe || tutatoe
1.693527
exip = ex || ex      (uniform)gappip = gap || gap  (uniform)sadip = sadi || sadi (uniform)
1.695040
cuba sircope = cube || sircope
1.717954
trid = id || iddip (uniform)
1.719624
haop = hodip || hodip (uniform)
1.732051
squatoe = tope || tope        (uniform)icathex = ico || thex         (segment ofsart)thexarico = thex || rico      (segment ofsart)sripalprip = srip || inv prip (segment ofsart)trashiddip = {3} || shiddip   (segment ofsart)cotut totric = co || tutatoe  (wedge ofsart)= coatut || toe= tut || coatoe
1.738546
ricoasadi = rico || sadidoa iddip = doe || iddip
1.765796
squid = iddip || iddip (uniform)
1.778824
ricoa = rico || gyro rico (scaliform)
1.802776
ricope = rico || rico       (uniform)copatope = cope || tope     (segment ofricope)         = coatoe || coatoe
1.847759
coasircope = co || sircopeica sidpith = ico || sidpithricasrit = rico || sritricoaspic = rico || spic
1.848423
pripalgrip = prip || gyro grip (segment ofpattix)tutatope = tut || tope         (segment ofpattix)
1.870173
tratic = tic || ticcup (uniform)
1.870829
ritarico = rit || rico   (segment ofspat)spidaprip = spid || prip (segment ofspat)pripagrip = prip || grip (segment ofspat)gripa = grip || inv grip (segment ofspat)copatoe = cope || toe    (wedge ofspat)
1.910497
grippip = grip || grip (uniform)
1.914214
ticca sircope = tic || sircopesquatic = ticcup || ticcup (uniform)spiccup = spic || spic     (uniform)srittip = srit || srit     (uniform,                            segment ofspan)sidpith || srit            (segment ofspan)
1.914854
deca agrip = deca || grip (segment ofpirx)
1.994779
cuba octu = cube || octu
2.117085
twacube = sitwadip || sitwadip (uniform)
2.150581
taha = tah || gyro tah (scaliform,                        segment ofpirhin)tipagrip = tip || grip
2.179449
tahp = tah || tah (uniform)
2.207107
tattip = tat || tat (uniform)srit || tat         (segment ofsirn)rap || tip          (segment ofsirn)sircoa ticcup = sirco || ticcup (segment ofsirn){4} || todip        (segment ofsirn)
2.231808
trasnid = snid || sniddip (uniform)
2.236068
ricatah = rico || tah    (segment ofsibrant)sripagrip = srip || grip (segment ofsibrant)coatope = co || tope     (wedge ofsibrant)
2.268840
squasnid = sniddip || sniddip (uniform)
2.291288
gippiddip = gippid || gippid (uniform)
2.306383
trasrid = srid || sriddip (uniform)
2.327373
gripagippid = grip || gippid (segment ofcograx)
2.342236
squasrid = sriddip || sriddip (uniform)
2.371708
thexagtah = thex || gyro tah
2.388442
tragirco = girco || gircope (uniform)
2.423081
squagirco = gircope || gircope (uniform)prittip = prit || prit         (uniform)
2.544388
trati = ti || tipe (uniform)
2.576932
squati = tipe || tipe (uniform)
2.632865
ritasrit = rita || sritsricoa = srico || gyro srico     (scaliform)prohalsrico = proh || gyro srico (diminishing ofsricoa)
2.647378
tico || prissi
2.660531
prohp = proh || proh     (uniform,                          segment ofcarnit)prit || proh             (segment ofcarnit)prit || srit             (segment ofcarnit)hodip || tisdip          (segment ofcarnit)sricope = srico || srico (uniform)
2.692582
ticope = tico || tico (uniform)
2.738613
pripa gippid = prip || gippid (segment ofpattit)
2.878460
proh || tat (segment ofcapt)
3
tahatico = tah || tico (segment ofpirt)
3.025056
tratid = tid || tiddip (uniform)
3.047217
grittip = grit || grit (segment ofprin)
3.052479
squatid = tiddip || tiddip (uniform)
3.118034
roxip = rox || rox (uniform)
3.239235
prohagrit = proh || grit  (segment ofpattin)ticca gircope = tic || gircope
3.450631
contip = cont || cont (uniform)
3.522336
pricoa = prico || gyro prico (scaliform)
3.534493
pricope = prico || prico       (uniform)gidpithip = gidpith || gidpith (uniform,                                segment ofcogart)
3.736068
hipe = hi || hi (uniform)
3.845977
tragrid = grid || griddip (uniform)
3.867584
squagrid = griddip || griddip (uniform)
3.988340
gritta gidpith = grit || gidpith (segment ofcogrin)
4.311477
gricoa = grico || gyro grico (scaliform)
4.328427
gricope = grico || grico (uniform)
4.562051
rahipe = rahi || rahi (uniform)
4.670365
thipe = thi || thi (uniform)
4.749980
texip = tex || tex (uniform)
4.776223
grixip = grix || grix (uniform)
5.194028
gippiccup = gippic || gippic (uniform)
5.259887
sidpixhip = sidpixhi || sidpixhi (uniform)
6.094140
srixip = srix || srix (uniform)
6.753568
srahip = srahi || srahi (uniform)
7.596108
xhip = xhi || xhi (uniform)
8.294035
prahip = prahi || prahi (uniform)
9.757429
prixip = prix || prix (uniform)
11.263210
grahip = grahi || grahi (uniform)
12.796423
gidpixhip = gidpixhi || gidpixhi (uniform)
...
3,n-dippip = n-p || 4,n-dip     (uniform)= 3,n-dip || 3,n-dip
...
n,cube-dip = 4,n-dip || 4,n-dip (uniform)
...
n,m-dippip = n,m-dip || n,m-dip (uniform)
...
(n,m-ap)-dip = n,m-dip || para-gyro n,m-dip (uniform)
...
n,m-dafup = n,m-dip || bidual n,m-dip (scaliform)
...
n-daf = n-p || bidual n-p (scaliform)
...
(n, dual n, n-p)-tric = n-g || gyro 3,n-dip
...
(n, n-p, gyro n-p)-tric = n-g || n-appip

(For degenerate segmentotera, i.e. having zero heights, cf. page "finite flat complexes".)

Somenon-convex segmentotera would be:



---- 6D----

(Just some) Convex Segmentopeta   (up)

CircumradiusSegmentopeton
0.654654
hop = pt || hix        (regular)= line || perp pen= {3} || perp tet
0.707107
gee = hix || inv hix      (regular)tacpy = pt || tac         (segment ofgee)hexasc = line || perp hex (lune ofgee)octete = {3} || perp oct  (wedge ofgee)squepe = {4} || perp tet  (wedge ofgee)
0.816497
hixip = hix || hix                (uniform)= line || penp= trip || part. ortho tripdijak = hin || tac                (segment ofjak)tedjak = hex || hin               (scaliform,                                    tridiminishedjak)hedjak = {4} || hin               (wedge ofjak)hinpy = pt || hin                 (segment ofjak)dihinpy = pt || dihin             (segment ofjak)rapesc = line || perp rap         (segment ofjak)tripal triddip = trip || dual-perp triddip                                  (wedge ofjak)hixalrix = hix || inv rix         (segment ofjak)hixaltriddip = hix || alt triddip (wedge ofjak)penaf = pen || inv penp           (segment ofjak)rapalpenp = rap || inv penp       (segment ofjak)trippete = {3} || perp trip       (segment ofjak)
0.845154
ril = hix || rix                  (uniform)penppy = pt || penp               (segment ofril)rapa penp = rap || penp           (segment ofril)trial tratet = {3} || dual tratet (segment ofril)octa tratet = oct || tratet       (segment ofril)tidril = hix || tedrix            (wedge ofril)pedril = {4} || tratet            (segment ofril)
0.856349
trapen = pen || penp   (uniform)= {3} || tratet
0.866025
hax = hin || gyro hin          (uniform)taccup = tac || tac            (uniform)tetdip = tet || tratet         (uniform)tratetdafup = tratet || bidual tratet (scaliform)tetal tratet = tet || inv tratettepasc = line || perp teperixpy = pt || rix              (segment ofhax)hixadot = hix || dot           (segment ofhax)hixacube = hix || cube         (wedge ofhax)rixa = rix || inv rix          (scaliform,                                segment ofhax)hexaf = hex || gyro hexip      (segment ofhax)octatepepy = pt || octatepe    (wedge ofhax)= tet || rappy= oct || tepepyhixa tetaope = hix || teta ope (half ofhax)hixaope = hix || ope           (quarter ofhax)tritra ope = (trig, dual trig, para trip, gyro trip) lace simplex
0.912871
trahex = hex || hexip (uniform)
0.918559
trial troct = {3} || gyro troct
0.925820
bril = rix || dot                        (uniform)tratetpy = pt || tratet                  (segment ofbril)tratet altroct = tratet || gyro troct    (segment ofbril)teta troct = tet || troct                (segment ofbril)pena rappip = pen || rappip              (segment ofbril)rappaf = rap || inv. rappip              (segment ofbril)triddippa tridafup = triddip || tridafup (segment ofbril)tisdip altratet = tisdip || gyro tratettatraffip = {3} || traffip= trip || gyro tisquippy= traf || tisdip
0.935414
hinnip = hin || hin                (uniform)= hexip || alt hexiptetafip = tepe || inv squatet      (segment ofhinnip)        = tepe || hexippenpal rappip = penp || alt rappip (segment ofhinnip)              = dihin || dihinrappyp = line || rappip            (segment ofhinnip)
0.948683
squapen = penp || penp   (uniform)= {4} || squatet
0.957427
rixip = rix || rix         (uniform)tepepyp = line || squatet  (segment ofrixip)        = tepepy || tepepy
0.966092
trarap = rap || rappip                 (uniform)= tratet || trocttitraf = triddip || gyro-para tratrip  (segment oftrarap)
CircumradiusSegmentopeton
1
dotip = dot || dot                (uniform)= rappip || inv rappiptridafupip = tridafup || tridafup (segment ofdotip)= tratrip || bidual tratripsquahex = hexip || hexip          (uniform)hixascad = hix || scad            (segment ofstaf)spidapenp = spid || penp          (segment ofstaf)hexippy = pt || hexip             (segment ofrag)hexipaico = hexip || ico          (wedge ofrag)hexipaco = hexip || co            (wedge ofrag)taccarat = tac || rat             (segment ofrag)hexarat = hex || rat              (segment ofrag)rixascad = rix || scad            (segment ofrag)dotpy = pt || dot                 (segment ofmo)dottascad = dot || scad           (segment ofmo)hinro = hin || rat                (segment ofmo)hinatedrat = hin || tedrat        (segment ofmo)icoahin = ico || hin              (segment ofmo)hinaco = hin || co                (segment ofmo)penal rappip = pen || alt rappip  (segment ofmo)spidarappip = spid || rappip      (wedge ofmo)tetaopepy = pen || ope            (wedge ofmo)= tet || opepy= pt || teta opehexaoctaco tettic = co || bidhin  (wedge ofdottascad)= oct || hexaco= tet || alt. rapacotetaco altepetric = co || tetaf= tet || hexaco= tet || inv tepacotriddipasc = line || perp triddip
1.118034
ratip = rat || rat    (uniform)scadip = scad || scad (uniform)
1.123033
icaf = ico || dual icope
1.195229
rixalspix = rix || inv spix (segment ofscal)scadaspix = scad || spix    (segment ofscal)
1.224745
ax = pent || pent                   (regular)troctpy = pt || troct               (segment ofbrag)dottaspix = dot || spix             (segment ofbrag)spixa = spix || inv spix            (segment ofbrag)ratanit = rat || nit                (segment ofbrag)hexcopedaw = hex || axis-ortho cope (segment ofbrag)hexaicope = hex || icope            (segment ofbrag)troctal traco = troct || inv. traco
1.228783
pentanit = pent || nit
1.290994
spixip = spix || spix         (uniform)ritgyt = rit || gyro rita     (scaliform,                               wedge ofrojak)ritahin = rit || hin          (wedge ofrojak)hinanit = hin || nit          (segment ofrojak)nitasiphin = nit || siphin    (segment ofrojak)ratasiphin = rat || siphin    (segment ofrojak)rixaspix = rix || spix        (segment ofrojak)spixalsarx = spix || inv sarx (segment ofrojak)icarita = ico || rita         (wedge ofrojak)hexaico alrittric = hex || alt. icarit (wedge ofrojak)= ico || hexalrit= rit || alt. hexaicorappippy = pt || rappip       (segment ofrojak)sripaf = srip || srippip
1.316561
trasrip = srip || srippip (uniform)
1.322876
tettut = tut || tratut          (uniform)hinasiphin = hin || siphin      (segment ofsochax)siphina = siphin || alt. siphin (segment ofsochax)ritas = rita || alt. rita       (segment ofsiphina)
1.362770
rixatix = rix || tix (segment ofsril)
1.369306
siphinnip = siphin || siphin (uniform)
1.384437
sarxip = sarx || sarx (uniform)
1.414214
tixip = tix || tix           (uniform)nitarin = nit || rin         (segment ofbrox)rixasarx = rix || sarx       (segment ofbrox)sarxasibrid = sarx || sibrid (segment ofbrox)
1.418705
pentarin = pent || rin
1.581139
bittixa = bittix || inv bittix (scaliform)
1.614654
open = {8} || otet (uniform)
1.632993
thexgyt = thex || gyro thexa (scaliform,                              wedge ofhejak)hinarin = hin || rin         (segment ofhejak)
1.658312
cappixa = cappix || alt cappix (scaliform)sirhina = sirhin || alt sirhin (scaliform,                                segment ofsophax)
1.732051
cardip = card || card        (uniform,                              segment ofram)dottasibrid = dot || sibrid  (segment ofram)sibridacard = sibrid || card (segment ofram)nitasirhin = nit || sirhin   (segment ofram)sirhinasart = sirhin || sart (segment ofram)
1.936492
thina = thin || alt thin     (scaliform)                              segment ofsirhax)sirhinathin = sirhin || thin (segment ofsirhax)
2.160247
tahgyt = tah || gyro taha (scaliform,                           wedge ofharjak)rinathin = rin || thin    (segment ofharjak)
2.236068
sartabittit = sart || bittit        (segment ofsiborg)bittita sibrant = bittit || sibrant (segment ofsiborg)
2.345208
squagippid = gippiddip || gippiddip (uniform)
3
gocadip = gocad || gocad (uniform)
4.855004
gacnetip = gacnet || gacnet (uniform)
...
(n,pen)-dip = {n} || (n,tet)-dip (uniform)
...
(n-g, dual n-g, para n-p, gyro n-p) lace simplex
...
(n,m)-dip || (n,m)-dafup

Somenon-convex segmentopeta would be:



---- 7D----

(Just some) Convex Segmentoexa   (up)

CircumradiusSegmentoexon
0.661438
oca = pt || hop        (regular)= line || perp hix= {3} || perp pen= tet || perp tet
0.707107
zee = hop || inv hop       (regular)geepy = pt || gee          (segment ofzee)taccasc = line || perp tac (lune ofzee)hexete = {3} || perp hex   (wedge ofzee)squix = {4} || perp pen    (wedge ofzee)octepe = tet || perp oct   (wedge ofzee)
0.823754
hopip = hop || hop (uniform)
0.866025
roc = hop || ril                (uniform)hixippy = pt || hixip           (segment ofroc)trialtrapen = {3} || inv trapen (segment ofroc)octatetdip = oct || tetdip      (segment ofroc)rapatrapen = rap || trapen      (segment ofroc)rixahixip = rix || hixip        (segment ofroc)tedroc = tedrix || hixip        (segment ofroc)geep = gee || gee               (uniform)= hixip || inv hixiptacpyp = line || taccup         (segment ofgeep)trahix = hix || hixip           (uniform,                                 wedge ofnaq)rila = ril || alt. ril          (scaliform,                                 segment ofnaq)jaka = jak || alt. jak          (scaliform,                                 segment ofnaq)jakpy = pt || jak               (segment ofnaq)dijakpy = pt || dijak           (segment ofnaq)hixaf = hix || inv hixip        (segment ofnaq)hopalril = hop || inv ril       (segment ofnaq)gahax = gee || hax              (segment ofnaq)hinsc = line || perp hin        (wedge ofnaq)hexalhax = hex || alt. hax      (wedge ofnaq)trapendafup = trapen || bidual trapen (scaliform)rapete = {3} || perp raptrippepe = trip || perp tet
0.912871
tratac = tac || taccup (uniform)
0.935414
hesa = hax || gyro hax                    (uniform)rilpy = pt || ril                         (segment ofhesa)hexal trahex = hex || gyro trahex         (segment ofhesa)hopabril = hop || bril                    (segment ofhesa)rilalbril = ril || alt. bril              (segment ofhesa)hinaf = hin || alt. hinnip                (segment ofhesa)trahex dafup = trahex || dual-gyro trahex (segment ofhesa)tetal tetdip = tet || dual tetdiptethex = hex || trahex                    (uniform)= tetdip || para-dual tetdip= hexip || lacing-ortho hexippenpasc = line || perp penptridafupap = tridafup || lacing-ortho tridafup (scaliform)
0.957427
squahix = hixip || hixip (uniform)jakip = jak || jak       (uniform)
0.968246
broc = ril || bril               (uniform)rapaltrarap = rap || alt. trarap (segment ofbroc)tetocta = tetoct || alt. tetoct  (scaliform,                                  segment ofbroc)
0.978945
trahin = hin || hinnip (uniform)
0.981981
rillip = ril || ril (uniform)
0.991632
trippen = trapen || trapen (uniform)
0.992157
trial trarap = {3} || alt. trarap
CircumradiusSegmentoexon
1
he = bril || inv bril       (uniform)tetdippy = pt || tetdip     (segment ofhe)tetdippa octdip = tetdip || octdip     (segment ofhe)trarapdafup = trarap || bi-alt. trarap (segment ofhe)trapen altralrap = trapen || bi-alt. trarapsquarat = ratip || ratip    (uniform)                             diminishing ofbarz)tettepe = tetdip || tetdip  (uniform)trarix = rix || rixip       (uniform,                             wedge oflaq)haxpy = pt || hax           (segment oflaq)haxarag = hax || rag        (segment oflaq)jakamo = jak || mo          (segment oflaq)hopalbril = hop || inv bril (segment oflaq)brilastaf = bril || staf    (segment oflaq)taccuppy = pt || taccup     (segment ofrez)garag = gee || rag          (segment ofrez)rilastaf = ril || staf      (segment ofrez)hopastaf = hop || staf      (segment ofsuph                             diminishing oflaq)rixasc = line || perp rixrixaf = rix || inv rixiptrial trahex = {3} || inv trahextrahex aico = trahex || icoratahinnip = rat || hinnip
1.040833
titridafup = trittip || bidual trittip (scaliform)rixap = rixip || inv rixip             (scaliform)
1.052209
brillip = bril || bril (uniform)
1.060660
haxip = hax || hax (uniform)
1.118034
tratratrip = trittip || trittip (uniform)stafip = staf || staf           (uniform)hinnipa ratip = hinnip || ratip
1.154701
trarat = rat || ratip (uniform)
1.224745
trahexpy = pt || trahex  (segment ofbarz)ragabrag = rag || brag   (segment ofbarz)scala = scal || inv scal (scaliform,                          segment ofbarz)
1.322876
hept = ax || ax                   (regular)brilalspil = bril || inv spil     (segment ofsco)scala spil = scal || spil         (segment ofsco)cubico = squico || squico         (uniform,                                   segment oflin)rojaka = rojak || alt. rojak      (scaliform,                                   segment oflin)haxabrag = hax || brag            (segment oflin)haxa cytedbrag = hax || cytedbrag (segment oflin)moarojak = mo || rojak            (segment oflin)bragasochax = brag || sochax      (segment oflin)brilpy = pt || bril               (segment oflin)hinaratip = hin || ratip          (segment oflin)spila = spil || inv spil          (scaliform)
1.384437
rojakip = rojak || rojak (uniform)
1.414214
trasarx = sarx || sarxip   (uniform)bragabrox = brag || brox   (segment ofsez)ragasochax = rag || sochax (segment ofranq)jakarojak = jak || rojak   (segment ofranq)rojakatrim = rojak || trim (segment ofranq)
1.451600
srillip = sril || sril (uniform)
1.457317
ohix = {8} || open (uniform)
1.581139
broxarax = brox || rax          (segment ofbersa)sabrila = sabril || inv. sabril (scaliform)
1.658312
jakatrim = jak || trim       (segment ofstanq)hejaka = hejak || alt. hejak (segment ofstanq)
1.732051
haxabrox = hax || brox        (segment ofrolaq)broxa sophax = brox || sophax (segment ofrolaq)rojaka hejak = rojak || hejak (segment ofrolaq)
1.936492
crala = cral || inv. cral          (scaliform)shopjaka = shopjak || alt. shopjak (scaliform,                                    segment ofbranq)
2.207940
thaxa = thax || alt. thax (scaliform,                           segment ofsirhesa)
2.5
hagippiddip = hagippid || hagippid (uniform)
3.774917
gotafip = gotaf || gotaf (uniform)
6.264982
gopamp = gopam || gopam (uniform)
...
n,n,n-tippip = n,n,n-tip || n,n,n-tip (uniform)
...
(n,m)-dafupap = (n,m)-dafup || lacing-ortho (n,m)-dafup (scaliform)

Somenon-convex segmentoexa would be:



---- 8D----

(Just some) Convex Segmentozetta   (up)

CircumradiusSegmentozetton
0.666667
ene  = pt || oca (regular)
0.707107
ek  = oca || dual oca      (regular)zeepy  = pt || zee         (segment ofek)geeasc = line || perp gee (wedge ofek)= pt || geepytaccete = {3} || perp tac (wedge ofek)        = line || perp tacpy        = pt || taccaschexepe = tet || perp hex (lune ofek)       = {3} || perp hexpy       = line || perp hexasc       = pt || hexete
0.829156
ocpe  = oca || oca (uniform)
0.866025
zeep  = zee || zee (uniform)
0.872872
trihop  = hop || hopip (uniform)
0.881917
rene  = oca || roc (uniform)
0.894427
pendip  = pen || tetpen (uniform)
0.948683
penhex = hex || tethex (uniform)       = hexip || trahex       = tetpen || first-dual tetpen
0.957427
octhix = oct || octpen (uniform)       = ope || tetoct       = trahix || first-dual trahix
0.963624
squahop  = hopip || hopip (uniform)
CircumradiusSegmentozetton
1
trajak = jak || jakip        (uniform,                              wedge offy)brene  = roc || broc          (uniform,                              segment offy)hocto  = hesa || gyro hesa    (uniform,                              segment offy)penrap = rap || tetrap       (uniform,= rappip || trarap     segment offy)= tetpen || octpentriphix  = trahix || trahix   (uniform)tethin  = hin || trahin       (uniform)rocip  = roc || roc           (uniform)rocpy  = pt || roc            (segment ofhocto)rocahe = roc || he           (segment ofhocto)ocabroc = oca || broc        (segment ofhocto)broca = broc || inv broc     (scaliform,                              segment ofhocto)ocasuph = oca || suph        (segment ofsoxeb)naqpy = pt || naq            (segment offy)jakapy = pt || jaka          (wedge offy)jakaf = jak || alt. jakip    (wedge offy)jakap = jaka || jaka         (scaliform,                              segment offy)naqalaq = naq || laq         (segment offy)naqpe  = naq || naq           (uniform,                              segment offy)zahesa = zee || hesa         (segment offy)hesa arez = hesa || rez      (segment offy)ocalroc  = oca || inv roc     (segment offy)rocalbroc  = roc || inv broc  (segment offy)rocasuph  = roc || suph       (segment offy)hexal hesa  = hex || alt hesa (wedge ofcodify)zarez = zee || rez           (segment ofrek)octa tethex  = oct || tethextethex aico  = tethex || icorapepe = tet || perp rap
1.054093
tetrappal octrap = tetrap || alt. octrap
1.118034
laqpe  = laq || laq (uniform)
1.224745
rezabarz = rez || barz (segment ofbark)
1.414214
octo  = hept || hept              (regular)trarojak = rojak || rojakip      (uniform)barzasez = barz || sez           (segment oftark)hesapy  = pt || hesa              (segment ofbay)laqalin  = laq || lin             (segment ofbay)linaranq  = lin || ranq           (segment ofbay)rojakaf = rojak || alt rojakip   (segment ofbay)rojakap = rojakip || alt rojakip (segment ofbay)= rojaka || rojaka


---- 9D----

(Just some) Convex Segmentoyotta   (up)

CircumradiusSegmentoyotton
0.670820
day = pt || ene (regular)
0.707107
vee = ene || dual ene (regular)
0.833333
enep = ene || ene (uniform)
0.866025
ekip = ek || ek (uniform)
0.877971
trioc = oca || ocpe (uniform)
0.894427
reday = ene || rene (uniform)
CircumradiusSegmentoyotton
0.903696
penhix = hix || tethix (uniform)= pen || pendip
0.968246
squoc = ocpe || ocpe (uniform)
1.024695
breday = rene || brene (uniform)
1.060660
henne = hocto || gyro hocto (uniform)
1.095445
treday = brene || trene (uniform)
1.118034
rapdafup = rapdip || bi-alt. rapdip (scaliform)
1.5
enne = octo || octo (regular)


----- 10D-----

(Just some) Convex Segmentoxenna   (up)

CircumradiusSegmentoxennon
0.674200
ux = pt || day (regular)
0.707107
ka = day || dual day (regular)
0.904534
ru = day || reday (uniform)
CircumradiusSegmentoxenna
1.044466
bru = reday || breday (uniform)
1.128152
tru = breday || treday (uniform)


© 2004-2025
top of page

[8]ページ先頭

©2009-2025 Movatter.jp