Movatterモバイル変換


[0]ホーム

URL:


Site MapPolytopesDynkin DiagramsVertex Figures, etc.Incidence MatricesIndex

Bistratic Lace Towers

Lace towers are defined to be stacks of lace prisms, therefore bistratic lace towers are polytopes withexactly 3 vertex layers aligned atop of each other, which all share a commonCoxeter symmetry.It shall be pointed out that lace prisms generally allow to considerdifferent edge length symbols. But in this page we restrict to bistraticCRF lace towers, i.e. which have unit edges only and furthermore their 2D faces are considered to be regular. Therefore non-unit edges only can occur as false ones within the medial layer, connecting2 coplanar lacing faces of the respective segments.

2D

3D

4D

For comparision purposes in the following listings those will be oriented such that the top circumradius is smaller or at most equal to the bottom one.Furthermore, when equal, that the height(1,2) is smaller or equal to the height(2,3).Also, whenever the across symmetry or a reducible part of it has an additional symmetry of itsDynkin symbol,then it will be oriented within lower lexicographic order, except that mereStott expansion are aligned,i.e. thatooo andxxx are given the same spott, in fact the lexicographical place of the latter one. The same also is used generally foroAo andxBx, whenA is any specific edge or pseudo edge length andB = A+x. (For more clarity on the according groupings the first column in each table is added to provide a visually attractingcorresponding logical paranthesis.)

In the following lists onlyaxial (external)blends are explicitly mentioned in the remarks columns,as these thus happen to be "mere" axial stacks. None the less, those casually may happen to be special when some of the lacing facets becomecollinaer / coplanar / corealmic / ... and thus can be considered to be blended in turn. In case this then could be seen in the equatorial dihedral angles column.


---- 2D (up)----

A1 across symmetry

Here we have just 3 cases:

Stott TypeLace TowerPolygonRemarksEquatorial Dihedral Angles
 
oqo&#xt
{4}both heights = 1/sqrt(2) = 0.707107
q = sqrt(2) = 1.414214
90°
 
ofx&#xt
{5}height(1,2) = sqrt[(5-sqrt(5))/8] = 0.587785
height(2,3) = sqrt[(5+sqrt(5))/8] = 0.951057
f = (1+sqrt(5))/2 = 1.618034
108°
 
xux&#xt
{6}both heights = sqrt(3)/2 = 0.866025
u = 2
120°


---- 3D (up)----

A2 across symmetry

Here the enumeration is obvious. We just have to select the bistraticJohnson solids with trigonal axial symmetry.

Stott TypeLace TowerPolyhedronRemarksEquatorial Dihedral Angles
 
oox3oxo&#xt
trig. gyroelong. pyr.blend oftet andoctat {3}-{3} = 180° resulting in lacing rhombs (thus non-CRF)
oox3xux&#xt
tut (acrossu) = 180° resulting in lacing {6}
 
oxo3ooo&#xt
tridpy (J12)blend of 2tetsat {3}-{3} = arccos(-7/9) = 141.057559°
oxo3xxx&#xt
tobcu (J27)blend of 2tricuesat {3}-{3} = arccos(-7/9) = 141.057559°
at {4}-{4} = arccos(-1/3) = 109.471221°
 
oxx3xxo&#xt
coblend of 2 gyratedtricuesat {3}-{4} = arccos[-1/sqrt(3)] = 125.264390°
 
oxx3ooo&#xt
etripy (J7)blend oftet andtripat {3}-{4} = arccos[-sqrt(8)/3] = 160.528779°
oxx3xxx&#xt
etcu (J18)blend oftricu andhipat {3}-{4} = arccos[-sqrt(8)/3] = 160.528779°
at {4}-{4} = arccos[-sqrt(2/3)] = 144.735610°
 
ofx3xoo&#xt
teddi (J63) (acrossf) = 180° resulting in lacing {5}
 
oAo3xox&#xt
tautip (J51)A = (1+sqrt(6))/2 = 1.724745-
xBx3xox&#xt
tauhip (J57)B = (3+sqrt(6))/2 = 2.724745-
 
oxo6sox&#xt
gyetcu (J22)blend oftricu andhapat {3}-{3} ≈ 169.428208°
at {3}-{4} ≈ 153.635039°

C2 across symmetry

Here the enumeration is obvious. We just have to select the bistraticJohnson solids with tetragonal axial symmetry.

Stott TypeLace TowerPolyhedronRemarksEquatorial Dihedral Angles
 
oox4oxo&#xt
gyesp (J10)blend ofsquippy andsquapat {3}-{3} ≈ 158.571770°
 
oxo4ooo&#xt
octblend of 2squippiesat {3}-{3} = arccos(-1/3) = 109.471221°
oxo4xxx&#xt
squobcu (J28)blend of 2squacuesat {3}-{3} = arccos(-1/3) = 109.471221°
at {4}-{4} = 90°
 
oxx4xxo&#xt
squigybcu (J29)blend of 2 gyratedsquacuesat {3}-{4} = arccos(-sqrt[(3-2 sqrt(2))/6]) = 99.735610°
 
oxx4ooo&#xt
esquipy (J8)blend ofsquippy andcubeat {3}-{4} = arccos[-sqrt(2/3)] = 144.735610°
oxx4xxx&#xt
escu (J19)blend ofsquacu andopat {3}-{4} = arccos[-sqrt(2/3)] = 144.735610°
at {4}-{4} = 135°
 
oqo4xox&#xt
co at {3}-{4} = arccos[-1/sqrt(3)] = 125.264390°
 
oxo8sox&#xt
gyescu (J23)blend ofsquacu andoapat {3}-{3} ≈ 151.330128°
at {3}-{4} ≈ 141.594518°

H2 across symmetry

Here the enumeration is obvious. We just have to select the bistraticJohnson solids with pentagonal axial symmetry.

Stott TypeLace TowerPolyhedronRemarksEquatorial Dihedral Angles
 
oox5oxo&#xt
gyepip (J11)blend ofpeppy andpapat {3}-{3} = arccos(-sqrt(5)/3) = 138.189685°
 
oxo5ooo&#xt
pedpy (J13)blend of 2peppiesat {3}-{3} = arccos[(4 sqrt(5)-5)/15] = 74.754736°
oxo5xxx&#xt
pobcu (J30)blend of 2pecuesat {3}-{3} = arccos[(4 sqrt(5)-5)/15] = 74.754736°
at {4}-{4} = arccos(1/sqrt(5)) = 63.434949°
 
oxx5xxo&#xt
pegybcu (J31)blend of 2 gyratedpecuesat {3}-{4} = arccos(sqrt[(3-sqrt(5))/6]) = 69.094843°
 
oxx5ooo&#xt
epeppy (J9)blend ofpeppy andpipat {3}-{4} = arccos(-sqrt[(10-2 sqrt(5))/15]) = 127.377368°
oxx5xxx&#xt
epcu (J20)blend ofpecu anddipat {3}-{4} = arccos(-sqrt[(10-2 sqrt(5))/15]) = 127.377368°
at {4}-{4} = arccos(-sqrt[(5-sqrt(5))/10]) = 121.717474°
 
ofx5xox&#xt
pero (J6) (acrossf) = 180° resulting in lacing {5}
 
oxo10sox&#xt
gyepcu (J24)blend ofpecu anddapat {3}-{3} ≈ 132.624012°
at {3}-{4} ≈ 126.964118°

A1×A1 across symmetry

Here the enumeration is obvious. We just have to select the bistraticJohnson solids with rectangular axial symmetry.And the prisms of the subdimensional case, for sure.

Stott TypeLace TowerPolyhedronRemarksEquatorial Dihedral Angles
 
oox oyo&#xt
tridpy (J12)y = sqrt(8/3) = 1.632993-
oox xYx&#xt
etidpy (J14)Y = sqrt[(11+4 sqrt(6))/3] = 2.632993-
 
oxo oxo&#xt
octblend of 2squippiesat {3}-{3} = arccos(-1/3) = 109.471221°
 
oxo oxx&#xt
autip (J49)blend ofsquippy andtripat {3}-{3} = arccos[-sqrt(2/3)] = 144.735610°
at {3}-{4} = arccos[-(sqrt(6)-1)/sqrt(12)] = 114.735610°
 
oxx xxo&#xt
gybef (J26)blend of 2 gyratedtripsat {3}-{4} = 150°
 
oqo xxx&#xt
cube at {4}-{4} = 90°
 
ofx xxx&#xt
pip at {4}-{4} = 108°
 
oAx xox&#xt
bautip (J50)A = (1+sqrt(6))/2 = 1.724745-
 
xox oqo&#xt
oct -
xox xwx&#xt
esquidpy (J15) -
 
xux xxx&#xt
hip at {4}-{4} = 120°
 
o(qo)o o(oq)o&#xt
octblend of 2squippiesat {3}-{3} = arccos(-1/3) = 109.471221°
o(qo)o x(xw)x&#xt
esquidpy (J15) at {3}-{3} = arccos(-1/3) = 109.471221°
at {4}-{4} = 90°
x(wx)x x(xw)x&#xt
squobcu (J28)blend of 2 gyratedsquacuesat {3}-{3} = arccos(-1/3) = 109.471221°
at {4}-{4} = 90°
 
(xu)o(xu) (ho)B(ho)&#xt
pabauhip (J55)B = sqrt(3)+sqrt(2) = 3.146264-


---- 4D (up)----

A3 across symmetry

Stott TypeLace TowerPolychoronRemarksEquatorial Dihedral Angles
 
oox3oxo3ooo&#xt
aurapblend ofoctpy andrapattet-{3}-tet = arccos[-(1+3 sqrt(5))/8] = 164.477512°
attet-{3}-oct = arccos[-(3 sqrt(5)-1)/8] = 135.522488°
oox3oxo3xxx&#xt
arse aurapblend oftetatut andcoatutattricu-{6}-tricu = arccos[-(1+3 sqrt(5))/8] = 164.477512°
atoct-{3}-tet = arccos[-(3 sqrt(5)-1)/8] = 135.522488°
 
oox3xxo3oxx&#xt
sripblend ofoctatut andcoatutattricu-{6}-tricu = 180° resulting in lacingco
attrip-{3}-oct = arccos[-sqrt(3/8)] = 127.761244°
 
oox3xfo3oox&#xt
octu (acrosso3f .) = 180° resulting in lacingteddi
(across. f3o) = 180° resulting in lacingteddi
 
oox3xux3oox&#xt
octum (acrosso3u .) = 180° resulting in lacingtut
(across. u3o) = 180° resulting in lacingtut
 
oox3xux3xoo&#xt
deca (acrosso3u .) = 180° resulting in lacingtut
(across. u3o) = 180° resulting in lacingtut
 
oxo3xox3oxo&#xt
icoblend of 2octacoesatsquippy-{4}-squippy = 180° resulting in lacingoct
atoct-{3}-oct = 120°
 
oxo3oox3xxo&#xt
tetacoaoctblend oftetaco andoctacoatsquippy-{4}-trip = arccos[-sqrt(5/6)] = 155.905157°
atoct-{3}-tet = arccos[-(3 sqrt(5)-1)/8] = 135.522488°
atoct-{3}-trip = arccos(sqrt[9-3 sqrt(5)]/4) = 112.238756°
 
oxo3ooo3ooo&#xt
teteblend of 2pensattet-{3}-tet = arccos(-7/8) = 151.044976°
oxo3ooo3xxx&#xt
gyspidblend of 2tetacoesattet-{3}-tet = arccos(-7/8) = 151.044976°
attrip-{4}-trip = arccos(-2/3) = 131.810315°
attrip-{3}-trip = arccos(-1/4) = 104.477512°
oxo3xxx3ooo&#xt
octatutbicublend of 2octatutsattricu-{6}-tricu = arccos(-7/8) = 151.044976°
attrip-{3}-trip = arccos(-1/4) = 104.477512°
oxo3xxx3xxx&#xt
tutatobcublend oftutatoesattricu-{6}-tricu = arccos(-7/8) = 151.044976°
attrip-{4}-trip = arccos(-2/3) = 131.810315°
athip-{6}-hip = arccos(-1/4) = 104.477512°
 
oxx3oox3xxo&#xt
tetaco altutblend oftetaco and gyratedcoatutattrip-{4}-trip = 180° resulting in lacinggybef
atoct-{3}-trip = arccos(-sqrt[27/32]) = 156.716268°
attet-{3}-tricu = arccos(-7/8) = 151.044976°
 
oxx3xoo3oxx&#xt
eoctacoblend ofoctaco andcopeatcube-{4}-squippy = 180° resulting in lacingesquipy
atoct-{3}-trip = 150°
 
oxx3ooo3xxo&#xt
spidblend of 2 gyratedtetacoesattrip-{4}-trip = arccos(-2/3) = 131.810315°
attet-{3}-trip = arccos(-sqrt(3/8)) = 127.761244°
oxx3xxx3xxo&#xt
tutato gybcublend of 2 gyratedtutatoesattrip-{4}-trip = arccos(-2/3) = 131.810315°
athip-{6}-tricu = arccos(-sqrt(3/8)) = 127.761244°
 
oxx3ooo3ooo&#xt
etepyblend ofpen andtepeattet-{3}-trip = arccos[-sqrt(15)/4] = 165.522488°
oxx3ooo3xxx&#xt
etetacoblend oftetaco andcopeattet-{3}-trip = arccos[-sqrt(15)/4] = 165.522488°
atcube-{4}-trip = arccos[-sqrt(5/6)] = 155.905157°
attrip-{3}-trip = arccos[-sqrt(5/8)] = 142.238756°
oxx3xxx3ooo&#xt
eoctatutblend ofoctatut andtuttipathip-{6}-tricu = arccos[-sqrt(15)/4] = 165.522488°
attrip-{3}-trip = arccos[-sqrt(5/8)] = 142.238756°
oxx3xxx3xxx&#xt
etutatoeblend oftutatoe andtopeathip-{6}-tricu = arccos[-sqrt(15)/4] = 165.522488°
atcube-{4}-trip = arccos[-sqrt(5/6)] = 155.905157°
athip-{6}-hip = arccos[-sqrt(5/8)] = 142.238756°
 
xxo3oxx3ooo&#xt
tetatutaoctblend oftetatut andoctatutattricu-{6}-tricu = arccos[-(3 sqrt(5)-1)/8] = 135.522488°
attet-{3}-trip = arccos(sqrt[9-3 sqrt(5)]/4) = 112.238756°
xxo3oxx3xxx&#xt
coatoatutblend ofcoatoe andtutatoeattricu-{6}-tricu = arccos[-(3 sqrt(5)-1)/8] = 135.522488°
athip-{6}-tricu = arccos(sqrt[9-3 sqrt(5)]/4) = 112.238756°
atcube-{4}-trip = arccos(-sqrt[(3-sqrt(5))/6]) = 110.905157°
 
ooo3oxo3ooo&#xt
hexblend of 2octpiesattet-{3}-tet = 120°
ooo3oxo3xxx&#xt
tetatut bicublend of 2tetatutsattet-{3}-tet = 120°
attricu-{6}-tricu = 120°
xxx3oxo3xxx&#xt
coatobcublend of 2coatoesattricu-{6}-tricu = 120°
atcube-{4}-cube = 90°
 
ooo3oxx3ooo&#xt
eoctpyblend ofoctpy andopeattet-{3}-trip = 150°
ooo3oxx3xxx&#xt
etetatutblend oftetatut andtuttipattet-{3}-trip = 150°
attricu-{6}-hip = 150°
xxx3oxx3xxx&#xt
ecoatoeblend ofcoatoe andtopeathip-{6}-tricu = 150°
atcube-{4}-cube = 135°
 
xfo3oox3ooo&#xt
tetu (acrossf3o .) = 180° resulting in lacingteddi
xfo3oox3xxx&#xt
coatutu (acrossf3o .) = 180° resulting in lacingteddi
(acrossf . x) = 180° resulting in lacingpip
attet-{3}-tricu = arccos[-sqrt(3/32) (sqrt(5)-1)] = 112.238756°
 
oao3xox3ooo&#xt
tau opea = (2+sqrt(10))/3 = 1.720759-
oao3xox3xxx&#xt
tehipau tuttipa = (2+sqrt(10))/3 = 1.720759attricu-{3}-tricu = arccos(1/4) = 75.522488°
xbx3xox3ooo&#xt
tetripau tuttipb = (5+sqrt(10))/3 = 2.720759-
xbx3xox3xxx&#xt
tautopeb = (5+sqrt(10))/3 = 2.720759attricu-{3}-tricu = arccos(1/4) = 75.522488°
 
xux3oox3ooo&#xt
tip (acrossu3o .) = 180° resulting in lacingtut
xux3oox3xxx&#xt
coatotum (acrossu3o .) = 180° resulting in lacingtut
(acrossu . x) = 180° resulting in lacinghip
attet-{3}-tricu = arccos[-sqrt(3/8)] = 127.761244°
 
xx(qo)3oo(oo)3ox(oq)&#xt
tetacoa cubeblend oftetaco andcubaco(acrossx3o .) = arccos[-(3-sqrt(8)+sqrt[30 sqrt(8)-45])/sqrt(48)] = 159.382864°
(acrossx . x) = arccos[-(1-sqrt(2)+sqrt[20 sqrt(2)-15])/sqrt(12 sqrt(2))] = 141.646907°
(across. o3x) = arccos[-(3-sqrt(8)+sqrt[90 sqrt(8)-135])/sqrt(128)] = 169.000195°
xx(qo)3xx(xx)3ox(oq)&#xt
tutatoa sircoblend oftutatoe andsircoatoe(acrossx3x .) = arccos[-(3-sqrt(8)+sqrt[30 sqrt(8)-45])/sqrt(48)] = 159.382864°
(acrossx . x) = arccos[-(1-sqrt(2)+sqrt[20 sqrt(2)-15])/sqrt(12 sqrt(2))] = 141.646907°
(across. x3x) = arccos[-(3-sqrt(8)+sqrt[90 sqrt(8)-135])/sqrt(128)] = 169.000195°
...

C3 across symmetry

Stott TypeLace TowerPolychoronRemarksEquatorial Dihedral Angles
 
oox3ooo4oxo&#xt
ptacubaoctblend ofcubpy andoctacubeatsquippy-{4}-squippy = arccos[-(sqrt(2)-1+sqrt[2 sqrt(2)-1])/2] = 152.031248°
oox3xxx4oxo&#xt
coaticatoeblend ofcoatic andtoaticatsquacu-{8}-squacu = arccos[-(sqrt(2)-1+sqrt[2 sqrt(2)-1])/2] = 152.031248°
attricu-{3}-trip = arccos[(3 sqrt(6)-2 sqrt(3)-sqrt[12 sqrt(2)-6])/8] = 85.898535°
 
oox3ooo4oxx&#xt
biscpoxicblend ofcubpy andcubasircoatcube-{4}-squippy = 180° resulting in lacingesquipy
oox3xxx4oxx&#xt
biscsricoblend ofoctatic andticagircoatop-{8}-squacu = 180° resulting in lacingescu
attricu-{3}-trip = 150°
 
oxo3oox4xxo&#xt
cubasircoacoblend ofcubasirco andcoasircoatsquippy-{4}-trip = arccos[-(1-sqrt(2)+sqrt[4 sqrt(2)-2])/sqrt(6)] = 127.704362°
atoct-{3}-tet = arccos[-(2-3 sqrt(2)+3 sqrt[4 sqrt(2)-2])/8] = 115.898535°
atcube-{4}-squap = arccos[-(sqrt[2 sqrt(2)-1]-1)/sqrt(sqrt(32))] = 98.515624°
 
oxo3ooo4ooo&#xt
hexblend of 2octpiesattet-{3}-tet = 120°
oxo3ooo4xxx&#xt
pacsid pithblend of 2cubasircoesattet-{3}-tet = 120°
attrip-{4}-trip = arccos(-1/3) = 109.471221°
atcube-{4}-cube = 90°
oxo3xxx4ooo&#xt
coatobcublend of 2coatoesattricu-{6}-tricu = 120°
atcube-{4}-cube = 90°
oxo3xxx4xxx&#xt
tica gircobcublend of 2ticagircoesattricu-{6}-tricu = 120°
attrip-{4}-trip = arccos(-1/3) = 109.471221°
atop-{8}-op = 90°
 
oxo3oox4xxx&#xt
cubasircoaticblend ofcubasirco andsircoaticattet-{3}-oct = 180° resulting in lacing trig. gyroelongated pyramids (thence non-CRF)
attrip-{4}-trip = 180° resulting in lacing rhomb-prisms (thence non-CRF)
atcube-{4}-squacu = 135°
 
oxx3oox4xxo&#xt
cubasircoatoeblend ofcubasirco andsircoatoeattrip-{4}-trip = arccos[-(2-sqrt(2)+sqrt[8 sqrt(2)-6])/3] = 164.503097°
attet-{3}-tricu = arccos[-(2 sqrt(2)-3+3 sqrt[4 sqrt(2)-3])/sqrt(32)] = 146.522293°
atcube-{4}-squap = arccos[-(sqrt(2)-1+sqrt[4 sqrt(2)-3])/sqrt(sqrt(32))] = 149.258250°
 
oxx3xxo4oox&#xt
coatoa sircoblend ofcoatoe andsircoatoeattricu-{6}-tricu = arccos[-(3-2 sqrt(2)+3 sqrt[4 sqrt(2)-3])/sqrt(32)] = 153.477707°
atcube-{4}-squap = arccos[-(1-sqrt(2)+sqrt[4 sqrt(2)-3])/sqrt(sqrt(32))] = 120.741750°
 
oxx3ooo4ooo&#xt
eoctpyblend ofoctpy andopeattet-{3}-trip = 150°
oxx3ooo4xxx&#xt
ecuba sircoblend ofcubasirco andsircopeattet-{3}-trip = 150°
atcube-{4}-trip = arccos[-sqrt(2/3)] = 144.735610°
atcube-{4}-cube = 135°
oxx3xxx4ooo&#xt
ecoatoeblend ofcoatoe andtopeathip-{6}-tricu = 150°
atcube-{4}-cube = 135°
oxx3xxx4xxx&#xt
etica gircoblend ofticagirco andgircopeathip-{6}-tricu = 150°
atcube-{4}-trip = arccos[-sqrt(2/3)] = 144.735610°
atop-{8}-op = 135°
 
xoo3oxo4oox&#xt
octacoacubeblend ofoctaco andcubacoatsquap-{4}-squippy = arccos[-sqrt(8-3 sqrt(2))/2] = 165.741750°
atoct-{3}-tet = arccos[-(3-sqrt(8)+3 sqrt[4 sqrt(2)-3])/(4 sqrt(2))] = 153.477707°
 
xoo3oxx4ooo&#xt
eoctacoblend ofoctaco andcopeatcube-{4}-squippy = 180° resulting in lacingesquipy
atoct-{3}-trip = 150°
xoo3oxx4xxx&#xt
esircoaticblend ofsircoatic andticcupatop-{8}-squacu = 180° resulting in lacingescu
atoct-{3}-trip = 150°
 
xox3oxo4ooo&#xt
icoblend of 2octacoesatsquippy-{4}-squippy = 180° resulting in lacingoct
atoct-{3}-oct = 120°
xox3oxo4xxx&#xt
pacsritblend of 2sircoaticsatsquacu-{8}-squacu = 180° resulting in lacingsquobcu
atoct-{3}-oct = 120°
 
xxo3oox4oxo&#xt
octasircoacoblend ofoctasirco andcoasircoatsquippy-{4}-trip = arccos[-(2-2 sqrt(2)+sqrt[4 sqrt(2)-2])/sqrt(12)] = 108.233141°
atsquap-{4}-squippy = arccos[-(sqrt[2 sqrt(2)-1]-1)/sqrt(sqrt(32))] = 98.515624°
atoct-{3}-trip = arccos[sqrt(3) (3 sqrt(2)-2-sqrt[4 sqrt(2)-2])/8] = 85.898535°
 
xxo3oox4oxx&#xt
octasircoaticblend ofoctasirco andsircoaticattrip-{4}-trip = arccos[-sqrt(8)/3] = 160.528779°
atoct-{3}-trip = 150°
atsquacu-{4}-squippy = 135°
 
xxo3ooo4oxx&#xt
octasircoacubeblend ofoctasirco andcubasircoatcube-{4}-squippy = 90°
attet-{3}-trip = 90°
attrip-{4}-trip = 90°
xxo3xxx4oxx&#xt
toagircoaticblend oftoagirco andticagircoathip-{6}-tricu = 90°
atop-{8}-squacu = 90°
attrip-{4}-trip = 90°
 
ooo3oox4oxo&#xt
ptacubacoblend ofcubpy andcubacoatsquap-{4}-squippy = arccos[-(sqrt(2)-1+sqrt[4 sqrt(2)-3])/(2 sqrt[sqrt(2)])] = 149.258250°
xxx3oox4oxo&#xt
octasircoatoeblend ofoctasirco andsircoatoeattricu-{3}-trip = arccos[-(2 sqrt(6)-sqrt(3)+sqrt[12 sqrt(2)-9])/(4 sqrt[sqrt(8)])] = 152.928678°
atsquap-{4}-squippy = arccos[-(sqrt(2)-1+sqrt[4 sqrt(2)-3])/(2 sqrt[sqrt(2)])] = 149.258250°
attrip-{4}-trip = arccos[-(2 sqrt(2)-2+sqrt[4 sqrt(2)-3])/3] = 145.031877°
 
ooo3xox4oqo&#xt
rit (across. o4q) = 180° resulting in lacingco
xxx3xox4oqo&#xt
pabdirico attricu-{3}-tricu = 120°
(acrossx . q) = 180° resulting in lacingcube
(across. o4q) = 180° resulting in lacingco
 
ooo3ooo4oxo&#xt
cuteblend of 2cubpiesatsquippy-{4}-squippy = 90°
ooo3xxx4oxo&#xt
coaticbicublend of 2coaticsatsquacu-{8}-squacu = 90°
attrip-{3}-trip = 60°
xxx3ooo4oxo&#xt
octa sircobcublend of 2octasircoesatsquippy-{4}-squippy = 90°
attrip-{4}-trip = arccos(1/3) = 70.528779°
attrip-{3}-trip = 60°
xxx3xxx4oxo&#xt
toagircobcublend of 2toagircoesatsquacu-{8}-squacu = 90°
attrip-{4}-trip = arccos(1/3) = 70.528779°
athip-{6}-hip = 60°
 
ooo3ooo4oxx&#xt
ecubpyblend ofcubpy andtesatcube-{4}-squippy = 135°
ooo3xxx4oxx&#xt
ecoaticblend ofcoatic andticcupatop-{8}-squacu = 135°
attrip-{3}-trip = 120°
xxx3ooo3oxx&#xt
eocta sircoblend ofoctasirco andsircopeatcube-{4}-squippy = 135°
atcube-{4}-trip = arccos[-1/sqrt(3)] = 125.264390°
attrip-{3}-trip = 120°
xxx3xxx4oxx&#xt
etoa gircoblend oftoagirco andgircopeatop-{8}-squacu = 135°
atcube-{4}-trip = arccos[-1/sqrt(3)] = 125.264390°
athip-{6}-hip = 120°
 
xfo3oox4ooo&#xt
octu (acrosso3f .) = 180° resulting in lacingteddi
xfo3oox4xxx&#xt
sirco aticu (acrossf3o .) = 180° resulting in lacingteddi
(acrossf . x) = 180° resulting in lacingpip
 
xux3oox4ooo&#xt
octum (acrossu3o .) = 180° resulting in lacingtut
xux3oox4xxx&#xt
sircoa gircotum (acrossu3o .) = 180° resulting in lacingtut
(acrossu . x) = 180° resulting in lacinghip
atcube-{4}-squacu = 135°
 
oqo3ooo4xox&#xt
pabdico -
oqo3xxx4xox&#xt
dapabdi spic atsquacu-{4}-squacu = 90°
xwx3ooo4xox&#xt
dapabdi poxic -
xwx3xxx4xox&#xt
hagy gircope atsquacu-{4}-squacu = 90°
 
oao3xox4ooo&#xt
haucopea = 1+1/sqrt(2) = 1.707107-
oao3xox4xxx&#xt
hau ticcupa = 1+1/sqrt(2) = 1.707107atsquacu-{4}-squacu = 90°
xbx3xox4ooo&#xt
hautopeb = 2+1/sqrt(2) = 2.707107-
xbx3xox4xxx&#xt
hau gircopeb = 2+1/sqrt(2) = 2.707107atsquacu-{4}-squacu = 90°
 
oos3oos4oxo&#xt
pta cubaikeblend ofcubpy andcubaikeatsquippy-{4}-trip = arccos[-sqrt(5/6)] = 155.905157°
 
oso3oso4oox&#xt
ptaika cubeblend ofikepy andcubaikeattet-{3}-tet = 120°
atsquippy-{3}-tet = arccos(-1/4) = 104.477512°
...

H3 across symmetry

Stott TypeLace TowerPolychoronRemarksEquatorial Dihedral Angles
 
oxo3ooo5oox&#xt
biscexblend ofikepy andikadoeattet-{3}-tet = arccos[-(1+3 sqrt(5))/8] = 164.477512°
oxo3xxx5oox&#xt
idatiatidblend ofidati andtiatidattricu-{6}-tricu = arccos[-(1+3 sqrt(5))/8] = 164.477512°
atpecu-{5}-pip = 126°
 
oxo3oox5xxo&#xt
doasridaidblend ofdoasrid andidasridatsquippy-{4}-trip = arccos(1/sqrt(6)) = 65.905157°
atoct-{3}-tet = 60°
atpap-{5}-pip = 54°
 
oxo3xox5oxo&#xt
idasrid bicublend of 2idasridsatsquippy-{4}-squippy = 90°
atoct-{3}-oct = arccos(1/4) = 75.522488°
atpap-{5}-pap = 72°
 
oxo3ooo5ooo&#xt
iteblend of 2ikepiesattet-{3}-tet = arccos[(3 sqrt(5)-1)/8] = 44.477512°
oxo3ooo5xxx&#xt
doasrid bicublend of 2doasridsattet-{3}-tet = arccos[(3 sqrt(5)-1)/8] = 44.477512°
attrip-{4}-trip = arccos(sqrt(5)/3) = 41.810315°
atpip-{5}-pip = 36°
oxo3xxx5ooo&#xt
idatibcublend of 2idatisattricu-{6}-tricu = arccos[(3 sqrt(5)-1)/8] = 44.477512°
atpip-{5}-pip = 36°
oxo3xxx5xxx&#xt
tidagrid bicublend of 2tidagridsattricu-{6}-tricu = arccos[(3 sqrt(5)-1)/8] = 44.477512°
attrip-{4}-trip = arccos(sqrt(5)/3) = 41.810315°
atdip-{10}-dip = 36°
 
oxx3xoo5oxx&#xt
eidasridblend ofidasrid andsriddipatcube-{4}-squippy = 135°
atoct-{3}-trip = arccos[-sqrt(3/8)] = 127.761244°
atpap-{5}-pip = 126°
 
oxx3xox5oxo&#xt
idasridatiblend ofidasrid andsridatiatsquippy-{4}-trip = arccos[-sqrt(5/6)] = 155.905157°
atpap-{5}-pap = 144°
atoct-{3}-tricu = arccos[-(3 sqrt(5)-1)/8] = 135.522488°
 
oxx3xxo5oox&#xt
idatiasridblend ofidati andsridatiattricu-{6}-tricu = arccos(-1/4) = 104.477512°
atpap-{5}-pip = 90°
 
oxx3ooo5ooo&#xt
eikepyblend ofikepy andipeattet-{3}-trip = arccos(sqrt[9-3 sqrt(5)]/4) = 112.238756°
oxx3ooo5xxx&#xt
edoasridblend ofdoasrid andsriddipattet-{3}-trip = arccos(sqrt[9-3 sqrt(5)]/4) = 112.238756°
atcube-{4}-trip = arccos(-sqrt[(3-sqrt(5))/6]) = 110.905157°
atpip-{5}-pip = 108°
oxx3xxx5ooo&#xt
eidatiblend ofidati andtipeathip-{6}-tricu = arccos(sqrt[9-3 sqrt(5)]/4) = 112.238756°
atpip-{5}-pip = 108°
oxx3xxx5xxx&#xt
etidagridblend oftidagrid andgriddipathip-{6}-tricu = arccos(sqrt[9-3 sqrt(5)]/4) = 112.238756°
atcube-{4}-trip = arccos(-sqrt[(3-sqrt(5))/6]) = 110.905157°
atdip-{10}-dip = 108°
 
xoo3oox5oxo&#xt
ikadoaidblend ofikadoe anddoaidatpap-{5}-peppy = 180° resulting in lacinggyepip
 
xoo3oxo5oox&#xt
ikaidadoeblend ofikaid anddoaidatpap-{5}-peppy = 108°
atoct-{3}-tet = arccos(-1/4) = 104.477512°
 
xoo3oxx5ooo&#xt
eikaidblend ofikaid andiddipatpip-{5}-peppy = 126°
atoct-{3}-trip = arccos(sqrt[9-3 sqrt(5)]/4) = 112.238756°
xoo3oxx5xxx&#xt
esridatidblend ofsridatid andtiddipatdip-{10}-pecu = 126°
atoct-{3}-trip = arccos(sqrt[9-3 sqrt(5)]/4) = 112.238756°
 
xoo3ooo5oxx&#xt
eikadoeblend ofikadoe anddopeatpip-{5}-peppy = 162°
xoo3xxx5oxx&#xt
etiatidblend oftiatid andtiddipatdip-{10}-pecu = 162°
attricu-{3}-trip = arccos[-sqrt(3/8)] = 127.761244°
 
xoo3ofx5xox&#xt
tiduro (acrosso3f .) = 180° resulting in lacingteddi
(across. f5o) = 180° resulting in lacingpero
 
xox3oxo5oox&#xt
biscroxblend ofikaid andidasridatpap-{5}-peppy = 180° resulting in lacinggyepip
atoct-{3}-oct = arccos[-(1+3 sqrt(5))/8] = 164.477512°
 
xox3oxo5ooo&#xt
riteblend of 2ikaidsatpeppy-{5}-peppy = 72°
atoct-{3}-oct = arccos[(3 sqrt(5)-1)/8] = 44.477512°
xox3oxo5xxx&#xt
sridatidbicublend of 2sridatidsatpecu-{10}-pecu = 72°
atoct-{3}-oct = arccos[(3 sqrt(5)-1)/8] = 44.477512°
 
xox3oxx5xxo&#xt
srida tidatiblend ofsridatid andtiatidatpecu-{10}-pecu = 108°
atoct-{3}-tricu = 60°
 
xox3ooo5oxo&#xt
ikadobcublend of 2ikadoesatpeppy-{5}-peppy = 144°
xox3xxx5oxo&#xt
tiatidbicublend of 2tiatidsatpecu-{10}-pecu = 144°
attricu-{3}-tricu = arccos(1/4) = 75.522488°
 
ooo3oxo5xox&#xt
doaid bicublend of 2doaidsattet-{3}-tet = arccos[-(1+3 sqrt(5))/8] = 164.477512°
atpap-{5}-pap = 144°
xxx3oxo5xox&#xt
sridatibcublend of 2sridatisattricu-{6}-tricu = arccos[-(1+3 sqrt(5))/8] = 164.477512°
atpap-{5}-pap = 144°
 
ooo3oxx5xoo&#xt
edoaidblend ofdoaid andiddipattet-{3}-trip = arccos(-sqrt[9+3 sqrt(5)]/4) = 172.238756°
atpap-{5}-pip = 162°
xxx3oxx5xoo&#xt
esridatiblend ofsridati andtipeathip-{6}-tricu = arccos(-sqrt[9+3 sqrt(5)]/4) = 172.238756°
atpap-{5}-pip = 162°
 
ooo3xox5ofx&#xt
biscrahi (across. o5f) = 180° resulting in lacingpero
xxx3xox5ofx&#xt
arse biscrahi (acrossx . f) = 180° resulting in lacingpip
(across. o5f) = 180° resulting in lacingpero
attricu-{3}-tricu = arccos[-(1+3 sqrt(5))/8] = 164.477512°
 
xfo3oox5ooo&#xt
iku (acrossf3o .) = 180° resulting in lacingteddi
xfo3oox5xxx&#xt
sridatidu (acrossf3o .) = 180° resulting in lacingteddi
(acrossf . x) = 180° resulting in lacingpip
atpecu-{5}-pip = 162°
 
xux3oox5ooo&#xt
iktum (acrossu3o .) = 180° resulting in lacingtut
xux3oox5xxx&#xt
srida gridtum (acrossu3o .) = 180° resulting in lacingtut
(acrossu . x) = 180° resulting in lacinghip
atpecu-{5}-pip = 162°
 
oAo3ooo5xox&#xt
owaudopeA = 3/sqrt(5) = 1.341641-
oAo3xxx5xox&#xt
twagy tiddipA = 3/sqrt(5) = 1.341641atpecu-{5}-pecu = 144°
xBx3ooo5xox&#xt
twau sriddipB = (5+3 sqrt(5))/5 = 2.341641-
xBx3xxx5xox&#xt
twagy griddipB = (5+3 sqrt(5))/5 = 2.341641atpecu-{5}-pecu = 144°
 
ofo3oox5xoo&#xt
twau doaid -
xFx3oox5xoo&#xt
twau sridati -
 
ofo3xox5ooo&#xt
twau iddip -
ofo3xox5xxx&#xt
twau tiddip atpecu-{5}-pecu = 144°
xFx3xox5ooo&#xt
twau tipe -
xFx3xox5xxx&#xt
twau griddip atpecu-{5}-pecu = 144°
 
sys3sos5sos&#xt
twausniddipy ≈ 2.253679-
...

A1×A2 across symmetry

Stott TypeLace TowerPolychoronRemarksEquatorial Dihedral Angles
 
oxo oox3oxo&#xt
rapblend oftrippy andtrafatsquippy-{4}-squippy = 180° resulting in lacingoct
atoct-{3}-tet = arccos(-1/4) = 104.477512°
 
oxo oxo3ooo&#xt
triptblend of 2trippiesatsquippy-{4}-squippy = arccos(-2/3) = 131.810315°
attet-{3}-tet = arccos(-1/4) = 104.477512°
oxo oxo3xxx&#xt
tripuf bicublend of 2tripufsatsquippy-{4}-squippy = arccos(-2/3) = 131.810315°
attricu-{6}-tricu = arccos(-1/4) = 104.477512°
attrip-{4}-trip = arccos(-1/9) = 96.379370°
 
oxx oxo3ooo&#xt
autepeblend oftrippy andtepeattet-{3}-tet = arccos[-sqrt(5/8)] = 142.238756°
atsquippy-{4}-trip = arccos[-sqrt((41-4 sqrt(10))/54)] = 136.433934°
oxx oxo3xxx&#xt
triahipatripblend oftripuf andtricupeattricu-{6}-tricu = arccos[-sqrt(5/8)] = 142.238756°
atsquippy-{4}-trip = arccos[-sqrt((41-4 sqrt(10))/54)] = 136.433934°
atcube-{4}-trip = arccos[-sqrt((32-21 sqrt(2))/46)] = 102.925295°
 
oxx oxx3ooo&#xt
etrippyblend oftrippy andtisdipatcube-{4}-squippy = arccos[-sqrt(5/6)] = 155.905157°
attet-{3}-trip = arccos[-sqrt(5/8)] = 142.238756°
oxx oxx3xxx&#xt
etripufblend oftripuf andshiddipatcube-{4}-squippy = arccos[-sqrt(5/6)] = 155.905157°
athip-{6}-tricu = arccos[-sqrt(5/8)] = 142.238756°
atcube-{4}-trip = arccos[-sqrt(5)/3] = 138.189685°
 
oxx xxo3ooo&#xt
(?)blend oftepe andtriddipattrip-{4}-sqtripuippy = arccos[-sqrt(8)/3] = 160.528779°
attet-{3}-trip = 150°
oxx xxo3xxx&#xt
(?)blend ofthiddip andtricupe...
 
oqo oox3xoo&#xt
hex -
 
oCo ooo3oox&#xt
teteC = sqrt(5/2) = 1.581139-
oCo xxx3oox&#xt
tracufbilC = sqrt(5/2) = 1.581139attrip-{3}-tricu = arccos(sqrt[3/8]) = 52.238756°
 
x(ou)x o(xo)x3x(xo)o&#xt
spid (across(..) (xo)3(..)) = 180° resulting in lacingtrip
(across(..) (..)3(xo)) = 180° resulting in lacingtrip
 
x(ou)x o(ox)x3x(uo)x&#xt
biscsrip (across(ou) (..)3(uo)) = 180° resulting in lacingco
(across(..) (ox)3(..)) = 180° resulting in lacingtrip
atoct-{3}-tricu = arccos(-1/4) = 104.477512°
 
oso2oso3oso&#xt
hexblend of 2octpiesattet-{3}-tet = 120°
...
 
oqo xxx3ooo&#xt
tisdip attrip-{3}-trip = 90°
oqo xxx3xxx&#xt
shiddip athip-{6}-hip = 90°
 
ofx xxx3ooo&#xt
trapedip attrip-{3}-trip = 108°
ofx xxx3xxx&#xt
phiddip athip-{6}-hip = 108°
 
xux xxx3ooo&#xt
thiddip attrip-{3}-trip = 120°
xux xxx3xxx&#xt
hiddip athip-{6}-hip = 120°
 
xxx oox3xux&#xt
tuttip (acrossx . u) = 180° resulting in lacinghip
(across. o3u) = 180° resulting in lacingtut
 
xxx oxo3ooo&#xt
tridpypblend of 2tepesattet-{3}-tet = 180° resulting in lacingtridpy
attrip-{3}-trip = arccos(-7/9) = 141.057559°
xxx oxo3xxx&#xt
tobcupeblend of 2tricupesattricu-{6}-tricu = 180° resulting in lacingtobcu
attrip-{3}-trip = arccos(-7/9) = 141.057559°
atcube-{4}-cube = arccos(-1/3) = 109.471221°
 
xxx oxx3xxo&#xt
copeblend of 2 gyratedtricupesattricu-{6}-tricu = 180° resulting in lacingco
atcube-{4}-trip = arccos[-1/sqrt(3)] = 125.264390°
 
xxx oxx3ooo&#xt
etepeblend oftepe andtisdipattet-{3}-trip = 180° resulting in lacingetripy
atcube-{4}-trip = arccos[-sqrt(8)/3] = 160.528779°
xxx oxx3xxx&#xt
etcupeblend oftricupe andshiddipathip-{6}-tricu = 180° resulting in lacingetcu
atcube-{4}-trip = arccos[-sqrt(8)/3] = 160.528779°
atcube-{4}-cube = arccos[-sqrt(2/3)] = 144.735610°
 
xxx ofx3xoo&#xt
teddipe (acrossx f .) = 180° resulting in lacingpip
(across. f3o) = 180° resulting in lacingteddi
 
xxx oAo3xox&#xt
tautipipA = (1+sqrt(6))/2 = 1.724745-
xxx xBx3xox&#xt
tauhipipB = (3+sqrt(6))/2 = 2.724745-
 
xxx oxo6sox&#xt
gyetcupeblend oftricupe andhappipathap-{6}-tricu = 180° resulting in lacinggyetcu
attrip-{3}-trip ≈ 169.428208°
atcube-{4}-trip ≈ 153.635039°

A1×C2 across symmetry

Stott TypeLace TowerPolychoronRemarksEquatorial Dihedral Angles
 
oxo oxo4ooo&#xt
cuteblend of 2cubpiesatsquippy-{4}-squippy = 90°
oxo oxo4xxx&#xt
squipuf bicublend of 2squipuf andtesatsquacu-{8}-squacu = 90°
atsquippy-{4}-squippy = 90°
attrip-{4}-trip = arccos(1/3) = 70.528779°
 
oyo oox4xoo&#xt
squapty = sqrt[2-1/sqrt(2)] = 1.137055-
 
oxx oxx4ooo&#xt
ecubpyblend ofcubpy andtesatsquippy-{4}-squippy = 135°
oxx oxx4xxx&#xt
esquipufblend ofsquipuf andsodipatcube-{4}-squippy = 135°
atop-{8}-squacu = 135°
atcube-{4}-trip = arccos[-1/sqrt(3)] = 125.264390°
 
xox oxo4ooo&#xt
hex -
xox oxo4xxx&#xt
quawros -
 
xox xox4oqo&#xt
cytau tes -
xox xox4xwx&#xt
cyte cubau sodip -
 
o(qo)o o(ox)o4o(oo)o&#xt
hexblend of 2octpiesattet-{3}-tet = 120°
o(qo)o o(ox)o4x(xx)x&#xt
quawrosblend of 2squacufbilsattet-{3}-tet = 120°
attrip-{4}-trip = arccos(-1/3) = 109.471221°
atcube-{4}-cube = 90°
x(wx)x o(ox)o4o(oo)o&#xt
pex hexblend of 2esquippidpiesattet-{3}-tet = 120°
attrip-{4}-trip = arccos(-1/3) = 109.471221°
x(wx)x o(ox)o4x(xx)x&#xt
pacsid pithblend of 2cubasircoesattet-{3}-tet = 120°
attrip-{4}-trip = arccos(-1/3) = 109.471221°
atcube-{4}-cube = 90°
 
(qo)q(qo) (ox)x(ox)4(oo)o(oo)&#xt
cytau tes (acrossq x .) = 180° resulting in lacingcube
atsquippy-{4}-squippy = 180° resulting in lacingoct
(qo)q(qo) (ox)x(ox)4(xx)x(xx)&#xt
cyte opau sodip (acrossq x .) = 180° resulting in lacingcube
(acrossq . x) = 180° resulting in lacingcube
atsquacu-{8}-squacu = 180° resulting in lacingsquobcu
 
(qo)q(qo) (xo)o(xo)4(oq)q(oq)&#xt
rit (across. o4q) = 180° resulting in lacingco
 
(qo)(qo)(qo) (ox)(xo)(ox)4(oo)(oq)(oo)&#xt
icoblend of 2octacoesatsquippy-{4}-squippy = 180° resulting in lacingoct
atoct-{3}-oct = 120°
(qo)(qo)(qo) (ox)(xo)(ox)4(xx)(xw)(xx)&#xt
bicyte ausodip (across(qo) (..) (xw)) = 180° resulting in lacingesquidpy
atsquacu-{8}-squacu = 180° resulting in lacingsquobcu
atoct-{3}-oct = 120°
(wx)(wx)(wx) (ox)(xo)(ox)4(oo)(oq)(oo)&#xt
pexic (across(wx) (..) (oq)) = 180° resulting in lacingesquidpy
atsquippy-{4}-squippy = 180° resulting in lacingoct
atoct-{3}-oct = 120°
(wx)(wx)(wx) (ox)(xo)(ox)4(xx)(xw)(xx)&#xt
pacsritblend of 2sircoaticsatsquacu-{8}-squacu = 180° resulting in lacingsquobcu
atoct-{3}-oct = 120°
 
oso2oso4oso&#xt
squaptblend of 2squappiesatsquippy-{4}-squippy = arccos[-(2-sqrt(2))/2] = 107.031248°
attet-{3}-tet = arccos[(3 sqrt(2)-4)/8] = 88.261948°
...
 
oqo xxx4ooo&#xt
tes (acrossq x .) = 180° resulting in lacingcube
atcube-{4}-cube = 90°
oqo xxx4xxx&#xt
sodip (acrossq x .) = 180° resulting in lacingcube
(acrossq . x) = 180° resulting in lacingcube
atop-{8}-op = 90°
 
ofx xxx4ooo&#xt
squipdip (acrossf x .) = 180° resulting in lacingpip
atcube-{4}-cube = 108°
ofx xxx4xxx&#xt
podip (acrossf x .) = 180° resulting in lacingpip
(acrossf . x) = 180° resulting in lacingpip
atop-{8}-op = 108°
 
xux xxx4ooo&#xt
shiddip (acrossu x .) = 180° resulting in lacinghip
atcube-{4}-cube = 120°
xux xxx4xxx&#xt
hodip (acrossu x .) = 180° resulting in lacinghip
(acrossu . x) = 180° resulting in lacinghip
atop-{8}-op = 120°
 
xxx oox4oxo&#xt
gyespypblend ofsquippyp andsquappipatsquap-{4}-squippy = 180° resulting in lacinggyesp
attrip-{4}-trip ≈ 158.571770°
 
xxx oxo4ooo&#xt
opeblend of 2squippypsatsquippy-{4}-squippy = 180° resulting in lacingoct
attrip-{4}-trip = arccos(-1/3) = 109.471221°
xxx oxo4xxx&#xt
squobcupeblend of 2squacupesatsquacu-{8}-squacu = 180° resulting in lacingsquobcu
attrip-{4}-trip = arccos(-1/3) = 109.471221°
atcube-{4}-cube = 90°
 
xxx oxx4xxo&#xt
squigybcupeblend of 2 gyratedsquacupesatsquacu-{8}-squacu = 180° resulting in lacingsquigybcu
atcube-{4}-trip = arccos(-sqrt[(3-2 sqrt(2))/6]) = 99.735610°
 
xxx oxx4ooo&#xt
esquipypblend ofsquippyp andtesatcube-{4}-squippy = 180° resulting in lacingesquipy
atcube-{4}-trip = arccos[-sqrt(2/3)] = 144.735610°
xxx oxx4xxx&#xt
escupeblend ofsquacupe andsodipatop-{8}-squacu = 180° resulting in lacingescu
atcube-{4}-trip = arccos[-sqrt(2/3)] = 144.735610°
atcube-{4}-cube = 135°
 
xxx oqo4xox&#xt
cope (acrossx q .) = 180° resulting in lacingcube
(across. q4o) = 180° resulting in lacingco
 
xxx oxo8sox&#xt
gyescupeblend ofsquacupe andoappipatoap-{8}-squacu = 180° resulting in lacinggyescu
attrip-{4}-trip ≈ 151.330128°
atcube-{4}-trip ≈ 141.594518°

A1×H2 across symmetry

Stott TypeLace TowerPolychoronRemarksEquatorial Dihedral Angles
 
ovo oox5xoo&#xt
paptv = (sqrt(5)-1)/2 = 0.618034-
 
oxo oxo5ooo&#xt
piptblend of 2pippiesatpeppy-{5}-peppy = 36°
atsquippy-{4}-squippy = arccos(2/sqrt(5)) = 26.565051°
oxo oxo5xxx&#xt
pepuf bicublend of 2pepufsatpecu-{10}-pecu = 36°
atsquippy-{4}-squippy = arccos(2/sqrt(5)) = 26.565051°
attrip-{4}-trip = arccos[(5+4 sqrt(5))/15] = 21.624634°
 
oxx oxx5ooo&#xt
epippyblend ofpippy andsquipdipatpeppy-{5}-pip = 108°
atcube-{4}-squippy = arccos(sqrt[(5-2 sqrt(5))/10]) = 103.282526°°
oxx oxx5xxx&#xt
epepufblend ofpepuf andsquadedipatdip-{10}-pecu = 108°
atcube-{4}-squippy = arccos(sqrt[(5-2 sqrt(5))/10]) = 103.282526°
atcube-{4}-trip = arccos(-sqrt[(5-2 sqrt(5))/15]) = 100.812317°
 
oso2oso5oso&#xt
paptblend of 2pappiesatpeppy-{5}-peppy = 72°
attet-{3}-tet = arccos[(3 sqrt(5)-1)/8] = 44.477512°
...
 
oqo xxx5ooo&#xt
squipdip (acrossq x .) = 180° resulting in lacingcube
atpip-{5}-pip = 90°
oqo xxx5xxx&#xt
squadedip (acrossq x .) = 180° resulting in lacingcube
(acrossq . x) = 180° resulting in lacingcube
atdip-{10}-dip = 90°
 
ofx xxx5ooo&#xt
pedip (acrossf x .) = 180° resulting in lacingpip
atpip-{5}-pip = 108°
ofx xxx5xxx&#xt
padedip (acrossf x .) = 180° resulting in lacingpip
(acrossf . x) = 180° resulting in lacingpip
atdip-{10}-dip = 108°
 
xux xxx5ooo&#xt
phiddip (acrossu x .) = 180° resulting in lacinghip
atpip-{5}-pip = 120°
xux xxx5xxx&#xt
hadedip (acrossu x .) = 180° resulting in lacinghip
(acrossu . x) = 180° resulting in lacinghip
atdip-{10}-dip = 120°
 
xxx oox5oxo&#xt
gyepippipblend ofpippy andpappipatpap-{5}-peppy = 180° resulting in lacinggeypip
attrip-{4}-trip = arccos(-sqrt(5)/3) = 138.189685°
 
xxx oxo5ooo&#xt
pedpypblend of 2peppypsatpeppy-{5}-peppy = 180° resulting in lacingpedpy
attrip-{4}-trip = arccos[(4 sqrt(5)-5)/15] = 74.754736°
xxx oxo5xxx&#xt
pobcupeblend of 2pecupesatpecu-{10}-pecu = 180° resulting in lacingpobcu
attrip-{4}-trip = arccos[(4 sqrt(5)-5)/15] = 74.754736°
atcube-{4}-cube = arccos(1/sqrt(5)) = 63.434949°
 
xxx oxx5xxo&#xt
pegybcupeblend of 2 gyratedpecupesatpecu-{10}-pecu = 180° resulting in lacingpegybcu
atcube-{4}-trip = arccos(sqrt[(3-sqrt(5))/6]) = 69.094843°
 
xxx oxx5ooo&#xt
epeppypblend ofpeppyp andsquipdipatpeppy-{5}-pip = 180° resulting in lacingepeppy
atcube-{4}-trip = arccos(-sqrt[(10-2 sqrt(5))/15]) = 127.377368°
xxx oxx5xxx&#xt
epcupeblend ofpecupe andsquadedipatdip-{10}-pecu = 180° resulting in lacingepcu
atcube-{4}-trip = arccos(-sqrt[(10-2 sqrt(5))/15]) = 127.377368°
atcube-{4}-cube = arccos(-sqrt[(5-sqrt(5))/10]) = 121.717474°
 
xxx ofx5xox&#xt
perope (acrossx f .) = 180° resulting in lacingpip
(across. f5o) = 180° resulting in lacingpero
 
xxx oxo10sox&#xt
gyepcupeblend ofpecupe anddappipatdap-{10}-pecu = 180° resulting in lacinggyepcu
attrip-{4}-trip ≈ 132.624012°
atcube-{4}-trip ≈ 126.964118°

A1×A1×A1 across symmetry

Stott TypeLace TowerPolychoronRemarksEquatorial Dihedral Angles
 
oxo oxo oxo&#xt
cuteblend of 2cubpiesatsquippy-{4}-squippy = 90°
 
oxo oxo xox&#xt
hex -
 
oxo xox xox&#xt
cute -
 
oao oox xoo&#xt
tetea = sqrt(5/2) = 1.581139-
 
oso2oso2oso&#xt
teteblend of 2pensattet-{3}-tet = arccos(-7/8) = 151.044976°
...
 
oox oyo xxx&#xt
tridpypy = sqrt(8/3) = 1.632993-
oox xYx xxx&#xt
etidpypY = sqrt[(11+4 sqrt(6))/3] = 2.632993-
 
oxo oxo xxx&#xt
opeblend of 2squippypsatsquippy-{4}-squippy = 180° resulting in lacingoct
attrip-{4}-trip = arccos(-1/3) = 109.471221°
 
oxo oxx xxx&#xt
autipipblend ofsquippyp andtisdipatsquippy-{4}-trip = 180° resulting in lacingautip
attrip-{4}-trip = arccos[-sqrt(2/3)] = 144.735610°
atcube-{4}-trip = arccos[-(sqrt(6)-1)/sqrt(12)] = 114.735610°
 
oxx xxo xxx&#xt
gybeffipblend of 2 gyratedtisdipsattrip-{4}-trip = 180° resulting in lacinggybef
atcube-{4}-trip = 150°
 
oqo xxx xxx&#xt
tes (acrossq x .) = 180° resulting in lacingcube
(acrossq . x) = 180° resulting in lacingcube
atcube-{4}-cube = 90°
 
ofx xxx xxx&#xt
squipdip (acrossf x .) = 180° resulting in lacingpip
(acrossf . x) = 180° resulting in lacingpip
atcube-{4}-cube = 108°
 
oAx xox xxx&#xt
bautipipA = (1+sqrt(6))/2 = 1.724745-
 
xox oqo xxx&#xt
ope -
xox xwx xxx&#xt
esquidpyp -
 
xux xxx xxx&#xt
shiddip (acrossu x .) = 180° resulting in lacinghip
(acrossu . x) = 180° resulting in lacinghip
atcube-{4}-cube = 120°
 
o(ox)o o(ox)o x(wx)x&#xt
pex hexblend of 2esquippidpiesattet-{3}-tet = 120°
attrip-{4}-trip = arccos(-1/3) = 109.471221°
 
o(qo)o o(oq)o x(xx)x&#xt
opeblend of 2squippypsatsquippy-{4}-squippy = 180° resulting in lacingoct
attrip-{4}-trip = arccos(-1/3) = 109.471221°
o(qo)o x(xw)x x(xx)x&#xt
esquidpyp (across(qo) (xw) (..)) = 180° resulting in lacingesquidpy
attrip-{4}-trip = arccos(-1/3) = 109.471221°
atcube-{4}-cube = 90°
x(wx)x x(xw)x x(xx)x&#xt
squobcupeblend of 2squacupes(across(wx) (xw) (..)) = 180° resulting in lacingsquobcu
attrip-{4}-trip = arccos(-1/3) = 109.471221°
atcube-{4}-cube = 90°
 
o(qoo)o o(oqo)o o(ooq)o&#xt
hexblend of 2octpiesattet-{3}-tet = 120°
o(qoo)o o(oqo)o x(xxw)x&#xt
pex hexblend of 2esquippidpiesattet-{3}-tet = 120°
attrip-{4}-trip = arccos(-1/3) = 109.471221°
o(qoo)o x(xwx)x x(xxw)x&#xt
quawrosblend of 2squacufbilsattet-{3}-tet = 120°
attrip-{4}-trip = arccos(-1/3) = 109.471221°
atcube-{4}-cube = 90°
x(wxx)x x(xwx)x x(xxw)x&#xt
pacsid pithblend of 2cubasircoesattet-{3}-tet = 120°
attrip-{4}-trip = arccos(-1/3) = 109.471221°
atcube-{4}-cube = 90°
 
(xu)o(xu) (ho)B(ho) (xx)x(xx)&#xt
pabaushiddipB = sqrt(3)+sqrt(2) = 3.146264-



© 2004-2025
top of page

[8]ページ先頭

©2009-2025 Movatter.jp