| Site Map | Polytopes | Dynkin Diagrams | Vertex Figures, etc. | Incidence Matrices | Index |
Sure, anything provided hereafter could be found already in the individual incidence matrix files, and sometimes also in some of the explanatory pages as well.None the less a missing link is that of dimensional analogy of the various members of a family of polytopes. Esp. for those generally existing cases.
In the followings some general dimensional series of polytopes get detailed.
These polytopes generally are self-dual. Further they are closely related to thepyramid product.In fact Sn here is nothing but the Sn-1 pyramid. Thence, by means of thelace prism notation, Sn = x3o...o3o (n nodes) can be described as well asox3oo...oo3oo&#x (n-1 node positions).
| Dimension | 1D | 2D | 3D | 4D | 5D | nD |
|---|---|---|---|---|---|---|
| Dynkin diagram | x | x3o | x3o3o | x3o3o3o | x3o3o3o3o | x3o...o3o |
| Acronym | line | trig | tet | pen | hix | n-simplex |
| Vertex Count | 2 | 3line | 4trig | 5tet | 6pen | n+1 |
| Facet Count | 3line | 4trig | 5tet | 6pen | n+1 | |
| Circumradius | 1/2 0.5 | 1/sqrt(3) 0.577350 | sqrt(3/8) 0.612372 | sqrt(2/5) 0.632456 | sqrt(5/12) 0.645497 | sqrt(n)/sqrt[2(n+1)] |
| Inradius | 1/2 0.5 | 1/sqrt(12) 0.288675 | 1/sqrt(24) 0.204124 | 1/sqrt(40) 0.158114 | 1/sqrt(60) 0.129099 | 1/sqrt[2n(n+1)] |
| Height 0-dim first | 1/2 0.5 | sqrt(3)/2 0.866025 | sqrt(2/3) 0.816497 | sqrt(5/8) 0.790569 | sqrt(3/5) 0.774597 | sqrt[(n+1)/(2n)] |
| Height 1-dim first | sqrt(3)/2 0.866025 | 1/sqrt(2) 0.707107 | sqrt(5/12) 0.645497 | sqrt(6)/4 0.612372 | sqrt[(n+1)/(4(n-1))] | |
| Height 2-dim first | sqrt(2/3) 0.816497 | sqrt(5/12) 0.645497 | 1/sqrt(3) 0.577350 | sqrt[(n+1)/(6(n-2))] | ||
| Height 3-dim first | sqrt(5/8) 0.790569 | sqrt(6)/4 0.612372 | sqrt[(n+1)/(8(n-3))] | |||
| Height 4-dim first | sqrt(3/5) 0.774597 | sqrt[(n+1)/(10(n-4))] | ||||
| Volume | 1 | sqrt(3)/4 0.433013 | sqrt(2)/12 0.117851 | sqrt(5)/96 0.023292 | sqrt(3)/480 0.0036084 | sqrt[(n+1)/(2n)]/n! |
| Surface | 2 | 3 | sqrt(3) 1.732051 | 5 sqrt(2)/12 0.589256 | sqrt(5)/16 0.139754 | (n+1) sqrt[n/(2n-1)]/(n-1)! |
| Dihedral angles | 0° | 60° | arccos(1/3) 70.528779° | arccos(1/4) 75.522488° | arccos(1/5) 78.463041° | arccos(1/n) |
| Dimension | 6D | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | x3o3o3o3o3o | x3o3o3o3o3o3o | x3o3o3o3o3o3o3o | x3o3o3o3o3o3o3o3o | x3o3o3o3o3o3o3o3o3o | x3o...o3o |
| Acronym | hop | oca | ene | day | ux | n-simplex |
| Vertex Count | 7hix | 8hop | 9oca | 10ene | 11day | n+1 |
| Facet Count | 7hix | 8hop | 9oca | 10ene | 11day | n+1 |
| Circumradius | sqrt(3/7) 0.654654 | sqrt(7)/4 0.661438 | 2/3 0.666667 | sqrt(9/20) 0.670820 | sqrt(5/11) 0.674200 | sqrt(n)/sqrt[2(n+1)] |
| Inradius | 1/sqrt(84) 0.109109 | 1/sqrt(112) 0.094491 | 1/12 0.083333 | 1/sqrt(180) 0.074536 | 1/sqrt(220) 0.067420 | 1/sqrt[2n(n+1)] |
| Height 0-dim first | sqrt(7/12) 0.763763 | 2/sqrt(7) 0.755929 | 3/4 0.75 | sqrt(5)/3 0.745356 | sqrt(11/20) 0.741620 | sqrt[(n+1)/(2n)] |
| Height 1-dim first | sqrt(7/20) 0.591608 | 1/sqrt(3) 0.577350 | 3/sqrt(28) 0.566947 | sqrt(5)/4 0.559017 | sqrt(11)/6 0.552771 | sqrt[(n+1)/(4(n-1))] |
| Height 2-dim first | sqrt(7/24) 0.540062 | 2/sqrt(15) 0.516398 | 1/2 0.5 | sqrt(5/21) 0.487950 | sqrt(11/48) 0.478714 | sqrt[(n+1)/(6(n-2))] |
| Height 3-dim first | sqrt(7/24) 0.540062 | 1/2 0.5 | 3/sqrt(40) 0.474342 | sqrt(5/24) 0.456435 | sqrt(11/56) 0.443203 | sqrt[(n+1)/(8(n-3))] |
| Height 4-dim first | sqrt(7/20) 0.591608 | 2/sqrt(15) 0.516398 | 3/sqrt(40) 0.474342 | 1/sqrt(5) 0.447214 | sqrt(11/60) 0.428174 | sqrt[(n+1)/(10(n-4))] |
| Height 5-dim first | sqrt(7/12) 0.763763 | 1/sqrt(3) 0.577350 | 1/2 0.5 | sqrt(5/24) 0.456435 | sqrt(11/60) 0.428174 | sqrt[(n+1)/(12(n-5))] |
| Height 6-dim first | 2/sqrt(7) 0.755929 | 3/sqrt(28) 0.566947 | sqrt(5/21) 0.487950 | sqrt(11/56) 0.443203 | sqrt[(n+1)/(14(n-6))] | |
| Height 7-dim first | 3/4 0.75 | sqrt(5)/4 0.559017 | sqrt(11/48) 0.478714 | sqrt[(n+1)/(16(n-7))] | ||
| Height 8-dim first | sqrt(5)/3 0.745356 | sqrt(11)/6 0.552771 | sqrt[(n+1)/(18(n-8))] | |||
| Height 9-dim first | sqrt(11/20) 0.741620 | sqrt[(n+1)/(20(n-9))] | ||||
| Volume | sqrt(7)/5760 0.00045933 | 1/20160 0.000049603 | 1/215040 0.0000046503 | sqrt(5)/5806080 0.00000038513 | sqrt(11)/116121600 0.0000000028562 | sqrt[(n+1)/(2n)]/n! |
| Surface | 7 sqrt(3)/480 0.025259 | sqrt(7)/720 0.0036747 | 1/2240 0.00044643 | 1/21504 0.000046503 | 11 sqrt(5)/5806080 0.0000042364 | (n+1) sqrt[n/(2n-1)]/(n-1)! |
| Dihedral angles | arccos(1/6) 80.405932° | arccos(1/7) 81.786789° | arccos(1/8) 82.819244° | arccos(1/9) 83.620630° | arccos(1/10) 84.260830° | arccos(1/n) |
Within these polytopes rSn generally can be described as thesegmentotope oftheregular simplex Sn-1 atop the rectified simplex rSn-1.Thence, by means of thelace prism notation,rSn = o3x3o...o3o (n nodes) can be described as well asxo3ox3oo...oo3oo&#x (n-1 node positions).
Furthermore are rectified simplices special cases of theCoxeter-Elte-Gosset polytopes km,n, in fact those generally are clearly the ones of the form 0(n-1),1.
| Dimension | 1D | 2D | 3D | 4D | 5D | nD |
|---|---|---|---|---|---|---|
| Dynkin diagram | o3x | o3x3o | o3x3o3o | o3x3o3o3o | o3x3o...o3o | |
| Acronym | trig | oct | rap | rix | rect. n-simplex | |
| Vertex Count | 3line | 6square | 10trip | 15tepe | n(n+1)/2 | |
| Facet Count rect. facets | 3line | 4trig | 5oct | 6rap | n+1 | |
| Facet Count verf facets | 4trig | 5tet | 6pen | n+1 | ||
| Circumradius | 1/sqrt(3) 0.577350 | 1/sqrt(2) 0.707107 | sqrt(3/5) 0.774597 | sqrt(2/3) 0.816497 | sqrt[(n-1)/(n+1)] | |
| Inradius wrt. rect. facets | 1/sqrt(6) 0.408248 | 1/sqrt(10) 0.316228 | 1/sqrt(15) 0.258199 | sqrt(2)/sqrt[n(n+1)] | ||
| Inradius wrt. verf facets | 1/sqrt(12) 0.288675 | 1/sqrt(6) 0.408248 | 3/sqrt(40) 0.474342 | 2/sqrt(15) 0.516398 | (n-1)/sqrt[2n(n+1)] | |
| Volume | sqrt(3)/4 0.433013 | sqrt(2)/3 0.471405 | 11 sqrt(5)/96 0.256216 | 13 sqrt(3)/240 0.093819 | (2n-n-1) sqrt[(n+1)/(2n)]/n! | |
| Surface | 3 | 2 sqrt(3) 3.464102 | 25 sqrt(2)/12 2.946278 | 3 sqrt(5)/4 1.677051 | (n+1)(2n-1-n+1) sqrt[n/(2n-1)]/(n-1)! | |
| Dihedral angles rect - rect | 60° verf - verf | arccos(1/4) 75.522488° | arccos(1/5) 78.463041° | arccos(1/n) | ||
| Dihedral angles verf - rect | arccos(-1/3) 109.471221° | arccos(-1/4) 104.477512° | arccos(-1/5) 101.536959° | arccos(-1/n) | ||
| Dimension | 6D | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | o3x3o3o3o3o | o3x3o3o3o3o3o | o3x3o3o3o3o3o3o | o3x3o3o3o3o3o3o3o | o3x3o3o3o3o3o3o3o3o | o3x3o...o3o |
| Acronym | ril | roc | rene | reday | ru | rect. n-simplex |
| Vertex Count | 21penp | 28hixip | 36hopip | 45ocpe | 55enep | n(n+1)/2 |
| Facet Count rect. facets | 7rix | 8ril | 9roc | 10rene | 11reday | n+1 |
| Facet Count verf facets | 7hix | 8hop | 9oca | 10ene | 11day | n+1 |
| Circumradius | sqrt(5/7) 0.845154 | sqrt(3)/2 0.866025 | sqrt(7)/3 0.881917 | 2/sqrt(5) 0.894427 | 3/sqrt(11) 0.904534 | sqrt[(n-1)/(n+1)] |
| Inradius wrt. rect. facets | 1/sqrt(21) 0.218218 | 1/sqrt(28) 0.188982 | 1/6 0.166667 | 1/sqrt(45) 0.149071 | 1/sqrt(55) 0.134840 | sqrt(2)/sqrt[n(n+1)] |
| Inradius wrt. verf facets | 5/sqrt(84) 0.545545 | 3/sqrt(28) 0.566947 | 7/12 0.583333 | 4/sqrt(45) 0.596285 | 9/sqrt(220) 0.606780 | (n-1)/sqrt[2n(n+1)] |
| Volume | 19 sqrt(7)/1920 0.026182 | 1/168 0.0059524 | 247/215040 0.0011486 | 251 sqrt(5)/2903040 0.00019333 | 1013 sqrt(11)/116121600 0.000028933 | (2n-n-1) sqrt[(n+1)/(2n)]/n! |
| Surface | 63 sqrt(3)/160 0.681995 | 29 sqrt(7)/360 0.213130 | 121/2240 0.054018 | 31/2688 0.011533 | 5533 sqrt(5)/5806080 0.0021309 | (n+1)(2n-1-n+1) sqrt[n/(2n-1)]/(n-1)! |
| Dihedral angles rect - rect | arccos(1/6) 80.405932° | arccos(1/7) 81.786789° | arccos(1/8) 82.819244° | arccos(1/9) 83.620630° | arccos(1/10) 84.260830° | arccos(1/n) |
| Dihedral angles verf - rect | arccos(-1/6) 99.594068° | arccos(-1/7) 98.213211° | arccos(-1/8) 97.180756° | arccos(-1/9) 96.379370° | arccos(-1/10) 95.739170° | arccos(-1/n) |
These non-convex polytopes frSn generally are facetings of therectified simplex rSn.
According to the fact that the mere Wythoffian construction providesGrünbaumian polytopes only,it is the secondary operation of replacing those double covered facets by single covers instead, which breaks down their orientability for all odd dimensions.Thence there avolume cannot be calculated.For the even dimensional cases we observe that no hemifacets occur and that the facet types alternate between prograde and retrograde wrt. the increasing absolute values of their inradii.
From the above shownsegmentotope representation of therectified simplex rSn,it becomes obvious that the polytopes frSn likewise can be given as such, though non-covex for sure, being generally the stack of thesimplex Sn-1 atop the facetorectified simplex frSn-1.
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | hemi(x3o3/2x ) | hemi(x3o3o3/2x ) | hemi(x3o3o3o3/2x ) | hemi(x3o3o3o3o3/2x ) | hemi(x3o...o3o3/2x ) |
| Acronym | thah | firp | firx | firl | facetorect. n-simplex |
| Vertex Count | 6 | 10 | 15 | 21 | n(n+1)/2 |
| Facet Count simplex | 4trig | 5tet | 6pen | 7hix | n+1 |
| Facet Count prism | 3square (hemi) | 10trip | 15tepe | 21penp | n(n+1)/2 |
| Facet Count duoprism | 10triddip (hemi) | 35tratet | (n-1)n(n+1)/6 | ||
| Circumradius | 1/sqrt(2) 0.707107 | sqrt(3/5) 0.774597 | sqrt(2/3) 0.816497 | sqrt(5/7) 0.845154 | sqrt[(n-1)/(n+1)] |
| Inradius wrt. simplex | 1/sqrt(6) 0.408248 | − 3/sqrt(40) 0.474342 | 2/sqrt(15) 0.516398 | + 5/sqrt(84) 0.545545 | (n-1)/sqrt[2n(n+1)] |
| Inradius wrt. prism | 0 | + 1/sqrt(60) 0.129099 | 1/sqrt(24) 0.204124 | − 3/sqrt(140) 0.253546 | (n-3)/sqrt[4(n-1)(n+1)] |
| Inradius wrt. duoprism | 0 | + 1/sqrt(168) 0.077152 | (n-5)/sqrt[6(n-2)(n+1)] | ||
| Volume | - | sqrt(5)/32 0.069877 | - | sqrt(7)/576 0.0045933 | - / sqrt[(n+1)/2n+2]/((n/2)!)2 |
| Surface | 3+sqrt(3) 4.732051 | [5 sqrt(2)+30 sqrt(3)]/12 4.919383 | [30+20 sqrt(2)+sqrt(5)]/16 3.782521 | [7 sqrt(3)+105 sqrt(5) +350 sqrt(6)]/480 2.300485 | ? |
| Dihedral angles simp. - (next) | arccos[1/sqrt(3)] 54.735610° | arccos[sqrt(3/8)] 52.238756° | arccos[sqrt(2/5)] 50.768480° | arccos[sqrt(5/12)] 49.797034° | arccos[sqrt((n-1)/2n)] |
| Dihedral angles prism - (next) | arccos(2/3) 48.189685° (prism - prism) | 45° | ? | ? | |
| Dihedral angles duopr. - (next) | ? (duopr. - duopr.) | ? | |||
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | hemi(x3o3o3o3o3o3/2x ) | hemi(x3o3o3o3o3o3o3/2x ) | hemi(x3o3o3o3o3o3o3o3/2x ) | hemi(x3o3o3o3o3o3o3o3o3/2x ) | hemi(x3o...o3o3/2x ) |
| Acronym | froc | ? | ? | ? | facetorect. n-simplex |
| Vertex Count | 28 | 36 | 45 | 55 | n(n+1)/2 |
| Facet Count simplex | 8hop | 9oca | 10ene | 11day | n+1 |
| Facet Count prism | 28hixip | 36hopip | 45ocpe | 55enep | n(n+1)/2 |
| Facet Count duoprism I | 56trapen | 84trahix | 120trihop | 165trioc | (n-1)n(n+1)/6 |
| Facet Count duoprism II | 35tetdip (hemi) | 126tetpen | 210tethix | 330tethop | (n-2)(n-1)n(n+1)/24 |
| Facet Count duoprism III | 126pendip (hemi) | 462penhix | (n-3)(n-2)(n-1)n(n+1)/120 | ||
| Circumradius | sqrt(3)/2 0.866025 | sqrt(7)/3 0.881917 | 2/sqrt(5) 0.894427 | 3/sqrt(11) 0.904534 | sqrt[(n-1)/(n+1)] |
| Inradius wrt. simplex | 3/sqrt(28) 0.566947 | − 7/12 0.583333 | 4/sqrt(45) 0.596285 | + 9/sqrt(220) 0.606780 | (n-1)/sqrt[2n(n+1)] |
| Inradius wrt. prism | 1/sqrt(12) 0.288675 | + 5/sqrt(252) 0.314970 | 3/sqrt(80) 0.335410 | − 7/sqrt(396) 0.351763 | (n-3)/sqrt[4(n-1)(n+1)] |
| Inradius wrt. duoprism I | 1/sqrt(60) 0.129099 | − 1/6 0.166667 | 2/sqrt(105) 0.195180 | + 5/sqrt(528) 0.217597 | (n-5)/sqrt[6(n-2)(n+1)] |
| Inradius wrt. douprism II | 0 | + 1/sqrt(360) 0.052705 | 1/sqrt(120) 0.091287 | − 3/sqrt(616) 0.120873 | (n-7)/sqrt[8(n-3)(n+1)] |
| Inradius wrt. douprism III | 0 | + 1/sqrt(660) 0.038925 | (n-9)/sqrt[10(n-4)(n+1)] | ||
| Volume | - | 1/6144 0.00016276 | - | sqrt(11)/921600 0.0000035988 | - / sqrt[(n+1)/2n+2]/((n/2)!)2 |
| Surface | ? | ? | ? | ? | ? |
| Dihedral angles simp. - (next) | arccos[sqrt(3/7)] 49.106605° | arccos[sqrt(7)/4] 48.590378° | arccos(2/3) 48.189685° | arccos[3/sqrt(20)] 47.869585° | arccos[sqrt((n-1)/2n)] |
| Dihedral angles prism - (next) | ? | ? | ? | ? | ? |
| Dihedral angles duopr. I - (next) | ? | ? | ? | ? | ? |
| Dihedral angles duopr. II - (next) | ? (duopr. II - duopr. II) | ? | ? | ? | |
| Dihedral angles duopr. III - (next) | ? (duopr. III - duopr. III) | ? |
Within these polytopes brSn generally can be described as thesegmentotope oftherectified simplex rSn-1 atop the birectified simplex brSn-1.Thence, by means of thelace prism notation,brSn = o3o3x3o...o3o (n nodes) can be described as well asoo3xo3ox3oo...oo3oo&#x (n-1 node positions).
Furthermore are birectified simplices special cases of theCoxeter-Elte-Gosset polytopes km,n, in fact those generally are clearly the ones of the form 0(n-2),2.
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | o3o3x | o3o3x3o | o3o3x3o3o | o3o3x3o3o3o | o3o3x3o...o3o |
| Acronym | tet | rap | dot | bril | birect. n-simplex |
| Vertex Count | 4trig | 10trip | 20triddip | 35tratet | (n-1)n(n+1)/6 |
| Facet Count rect. fac. | 5oct | 6rap | 7rix | n+1 | |
| Facet Count birect. fac. | 4trig | 5tet | 6rap | 7dot | n+1 |
| Circumradius | sqrt(3/8) 0.612372 | sqrt(3/5) 0.774597 | sqrt(3)/2 0.866025 | sqrt(6/7) 0.925820 | sqrt[(3n-6)/(2n+2)] |
| Inradius wrt. rect. facets | 1/sqrt(24) 0.204124 | 1/sqrt(10) 0.316228 | sqrt(3/20) 0.387298 | 2/sqrt(21) 0.436436 | (n-2)/sqrt[2n(n+1)] |
| Inradius wrt. birect. facets | 3/sqrt(40) 0.474342 | sqrt(3/20) 0.387298 | sqrt(3/28) 0.327327 | 3/sqrt[2n(n+1)] | |
| Volume | sqrt(2)/12 0.117851 | 11 sqrt(5)/96 0.256216 | 11 sqrt(3)/80 0.238157 | 151 sqrt(7)/2880 0.138718 | [3n-(n+1) 2n+n(n+1)/2] sqrt[(n+1)/2n]/n! |
| Surface | sqrt(3) 1.732051 | 25 sqrt(2)/12 2.946278 | 11 sqrt(5)/8 3.074593 | 161 sqrt(3)/120 2.323835 | (n+1) [3n-1-(n-1) 2n-1+n(n-3)/2] sqrt[n/2n-1]/(n-1)! |
| Dihedral angles rect. - rect. | arccos(1/4) 75.522488° | arccos(1/5) 78.463041° | arccos(1/6) 80.405932° | arccos(1/n) | |
| Dihedral angles rect. - birect. | arccos(-1/4) 104.477512° | arccos(-1/5) 101.536959° | arccos(-1/6) 99.594068° | arccos(-1/n) | |
| Dihedral angles birect. - birect. | arccos(1/3) 70.528779° | arccos(1/4) 75.522488° | arccos(1/5) 78.463041° | arccos(1/6) 80.405932° | arccos(1/n) |
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | o3o3x3o3o3o3o | o3o3x3o3o3o3o3o | o3o3x3o3o3o3o3o3o | o3o3x3o3o3o3o3o3o3o | o3o3x3o...o3o |
| Acronym | broc | brene | breday | bru | birect. n-simplex |
| Vertex Count | 56trapen | 84trahix | 120trahop | 165traoc | (n-1)n(n+1)/6 |
| Facet Count rect. facets | 8ril | 9roc | 10rene | 11reday | n+1 |
| Facet Count birect. facets | 8bril | 9broc | 10brene | 11breday | n+1 |
| Circumradius | sqrt(15)/4 0.968246 | 1 | sqrt(21/20) 1.024695 | sqrt(12/11) 1.044466 | sqrt[(3n-6)/(2n+2)] |
| Inradius wrt. rect. facets | 5/sqrt(112) 0.472456 | 1/2 0.5 | 7/sqrt(180) 0.521749 | 4/sqrt(55) 0.539360 | (n-2)/sqrt[2n(n+1)] |
| Inradius wrt. birect. facets | 3/sqrt(112) 0.283473 | 1/4 0.25 | 1/sqrt(20) 0.223607 | 3/sqrt(220) 0.202260 | 3/sqrt[2n(n+1)] |
| Volume | 397/6720 0.059077 | 1431/71680 0.019964 | 913 sqrt(5)/362880 0.0056259 | 299 sqrt(11)/725760 0.0013664 | [3n-(n+1) 2n+n(n+1)/2] sqrt[(n+1)/2n]/n! |
| Surface | 359 sqrt(7)/720 1.319201 | 1311/2240 0.585268 | 1135/5376 0.211124 | 16621 sqrt(5)/580608 0.064012 | (n+1) [3n-1-(n-1) 2n-1+n(n-3)/2] sqrt[n/2n-1]/(n-1)! |
| Dihedral angles rect. - rect. | arccos(1/7) 81.786789° | arccos(1/8) 82.819244° | arccos(1/9) 83.620630° | arccos(1/10) 84.260830° | arccos(1/n) |
| Dihedral angles rect. - birect. | arccos(-1/7) 98.213211° | arccos(-1/8) 97.180756° | arccos(-1/9) 96.379370° | arccos(-1/10) 95.739170° | arccos(-1/n) |
| Dihedral angles birect. - birect. | arccos(1/7) 81.786789° | arccos(1/8) 82.819244° | arccos(1/9) 83.620630° | arccos(1/10) 84.260830° | arccos(1/n) |
Within these polytopes tSn generally can be described as thebistratic lace tower oftheregular simplex Sn-1 atop anu-scaled Sn-1 atop the truncated simplex tSn-1.Thence, by means of thelace tower notation,tSn = x3x3o...o3o (n nodes) can be described as well asxux3oox3ooo...ooo3ooo&#xt (n-1 node positions).As such those also could be referred to as simplexialtutsatopes: in fact tutsatopes are quite similarily defined as theursatopes, just that the part that there was played (within 4D) by the lacingteddies here now is taken by accordingtuts.
| Dimension | 1D | 2D | 3D | 4D | 5D | nD |
|---|---|---|---|---|---|---|
| Dynkin diagram | x3x | x3x3o | x3x3o3o | x3x3o3o3o | x3x3o...o3o | |
| Acronym | hig | tut | tip | tix | trunc. n-simplex | |
| Vertex Count | 6 | 12 | 20 | 30 | n(n+1) | |
| Facet Count trunc. facets | 3line | 4hig | 5tut | 6tip | n+1 | |
| Facet Count verf facets | 3line | 4trig | 5tet | 6pen | n+1 | |
| Circumradius | 1 | sqrt(11/8) 1.172604 | sqrt(8/5) 1.264911 | sqrt(7)/2 1.322876 | sqrt[(5n-4)/(2n+2)] | |
| Inradius wrt. trunc. facets | sqrt(3)/2 0.866025 | sqrt(3/8) 0.612372 | 3/sqrt(40) 0.474342 | sqrt(3/20) 0.387298 | 3/sqrt[2n(n+1)] | |
| Inradius wrt. verf facets | sqrt(3)/2 0.866025 | 5/sqrt(24) 1.020621 | 7/sqrt(40) 1.106797 | sqrt(27/20) 1.161895 | (2n-1)/sqrt[2n(n+1)] | |
| Volume | 3 sqrt(3)/2 2.598076 | 23 sqrt(2)/12 2.710576 | 19 sqrt(5)/24 1.770220 | 79 sqrt(3)/160 0.855200 | (3n-n-1) sqrt[(n+1)/(2n)]/n! | |
| Surface | 6 | 7 sqrt(3) 12.124356 | 10 sqrt(2) 14.142136 | 77 sqrt(5)/16 10.761077 | (n+1)(3n-1-n+1) sqrt[n/(2n-1)]/(n-1)! | |
| Dihedral angles trunc - trunc | arccos(1/4) 75.522488° | arccos(1/5) 78.463041° | arccos(1/n) | |||
| Dihedral angles verf - trunc | 120° | arccos(-1/3) 109.471221° | arccos(-1/4) 104.477512° | arccos(-1/5) 101.536959° | arccos(-1/n) | |
| Dimension | 6D | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | x3x3o3o3o3o | x3x3o3o3o3o3o | x3x3o3o3o3o3o3o | x3x3o3o3o3o3o3o3o | x3x3o3o3o3o3o3o3o3o | x3x3o...o3o |
| Acronym | til | toc | tene | teday | tu | trunc. n-simplex |
| Vertex Count | 42 | 56 | 72 | 90 | 110 | n(n+1) |
| Facet Count trunc. facets | 7tix | 8til | 9toc | 10tene | 11teday | n+1 |
| Facet Count verf facets | 7hix | 8hop | 9oca | 10ene | 11day | n+1 |
| Circumradius | sqrt(13/7) 1.362771 | sqrt(31)/4 1.391941 | sqrt(2) 1.414214 | sqrt(41/20) 1.431782 | sqrt(23/11) 1.445998 | sqrt[(5n-4)/(2n+2)] |
| Inradius wrt. trunc. facets | sqrt(3/28) 0.327327 | 3/sqrt(112) 0.283473 | 1/4 0.25 | 1/sqrt(20) 0.223607 | 3/sqrt(220) 0.202260 | 3/sqrt[2n(n+1)] |
| Inradius wrt. verf facets | 11/sqrt(84) 1.200198 | 13/sqrt(112) 1.228385 | 5/4 1.25 | 17/sqrt(180) 1.267105 | 19/sqrt(220) 1.280980 | (2n-1)/sqrt[2n(n+1)] |
| Volume | 361 sqrt(7)/2880 0.331638 | 2179/20160 0.108085 | 39/1280 0.030469 | 19673 sqrt(5)/5806080 0.0075766 | 4217 sqrt(11)/8294400 0.0016862 | (3n-n-1) sqrt[(n+1)/(2n)]/n! |
| Surface | 833 sqrt(3)/240 6.011660 | 241 sqrt(7)/240 2.656775 | 109/112 0.973214 | 6553/21504 0.304734 | 12023 sqrt(5)/322560 0.083346 | (n+1)(3n-1-n+1) sqrt[n/(2n-1)]/(n-1)! |
| Dihedral angles trunc - trunc | arccos(1/6) 80.405932° | arccos(1/7) 81.786789° | arccos(1/8) 82.819244° | arccos(1/9) 83.620630° | arccos(1/10) 84.260830° | arccos(1/n) |
| Dihedral angles verf - trunc | arccos(-1/6) 99.594068° | arccos(-1/7) 98.213211° | arccos(-1/8) 97.180756° | arccos(-1/9) 96.379370° | arccos(-1/10) 95.739170° | arccos(-1/n) |
Within these polytopes btSn for n>3 can be described as thebistratic lace towerof thetruncated simplex tSn-1 atop anu-scaledrectified simplex rSn-1 atop the bitruncated simplex btSn-1.Thence, by means of thelace tower notation, btSn =o3x3x3o...o3o (n nodes) can be described aswell asxoo3xux3oox3ooo...ooo3ooo&#xt (n-1 node positions).A posteriori that latter lace tower then applies even for n=3 too, thereby quite similarily just reducing to its first 2 node positions.
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | o3x3x | o3x3x3o | o3x3x3o3o | o3x3x3o3o3o | o3x3x3o...o3o |
| Acronym | tut | deca | bittix | batal | bitrunc. n-simplex |
| Vertex Count | 12 | 30 | 60 | 105 | (n+1)n(n-1)/2 |
| Facet Count bitrunc. fac. | 4trig | 5tut | 6deca | 7bittix | n+1 |
| Facet Count trunc. fac. | 4hig | 5tut | 6tip | 7tix | n+1 |
| Circumradius | sqrt(11/8) 1.172604 | sqrt(2) 1.414214 | sqrt(29/12) 1.554563 | sqrt(19/7) 1.647509 | sqrt[(9n-16)/(2n+2)] |
| Inradius bitrunc. fac. | 5/sqrt(24) 1.020621 | sqrt(5/8) 0.790569 | sqrt(5/12) 0.645497 | 5/sqrt(84) 0.545545 | 5/sqrt[2n(n+1)] |
| Inradius trunc. fac. | sqrt(3/8) 0.612372 | sqrt(5/8) 0.790569 | 7/sqrt(60) 0.903696 | sqrt(27/28) 0.981981 | (2n-3)/sqrt[2n(n+1)] |
| Volume | 23 sqrt(2)/12 2.710576 | 115 sqrt(5)/48 5.357246 | 841 sqrt(3)/240 6.069395 | ? | ? |
| Surface | 7 sqrt(3) 12.124356 | 115 sqrt(2)/6 27.105760 | 153 sqrt(5)/8 42.764800 | ? | ? |
| Dihedral angles bitrunc - bitrunc | arccos(1/4) 75.522488° | arccos(1/5) 78.463041° | arccos(1/6) 80.405932° | arccos(1/n) | |
| Dihedral angles bitrunc - trunc | arccos(-1/3) 109.471221° | arccos(-1/4) 104.477512° | arccos(-1/5) 101.536959° | arccos(-1/6) 99.594068° | arccos(-1/n) |
| Dihedral angles trunc - trunc | arccos(1/3) 70.528779° | arccos(1/4) 75.522488° | arccos(1/5) 78.463041° | arccos(1/6) 80.405932° | arccos(1/n) |
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | o3x3x3o3o3o3o | o3x3x3o3o3o3o3o | o3x3x3o3o3o3o3o3o | o3x3x3o3o3o3o3o3o3o | o3x3x3o...o3o |
| Acronym | bittoc | batene | biteday | ? | bitrunc. n-simplex |
| Vertex Count | 168 | 252 | 360 | 495 | (n+1)n(n-1)/2 |
| Facet Count bitrunc. fac. | 8batal | 9bittoc | 10batene | 11biteday | n+1 |
| Facet Count trunc. fac. | 8til | 9toc | 10tene | 11teday | n+1 |
| Circumradius | sqrt(47)/4 1.713914 | sqrt(29)/3 1.795055 | sqrt(13)/2 1.802776 | sqrt(37/11) 1.834022 | sqrt[(9n-16)/(2n+2)] |
| Inradius bitrunc. fac. | 5/sqrt(112) 0.472456 | 5/12 0.416667 | sqrt(5)/6 0.372678 | sqrt(5/44) 0.337100 | 5/sqrt[2n(n+1)] |
| Inradius trunc. fac. | 11/sqrt(112) 1.039402 | 13/12 1.083333 | sqrt(45)/6 1.118034 | 17/sqrt(220) 1.146140 | (2n-3)/sqrt[2n(n+1)] |
| Volume | ? | ? | ? | ? | ? |
| Surface | ? | ? | ? | ? | ? |
| Dihedral angles bitrunc - bitrunc | arccos(1/7) 81.786789° | arccos(1/8) 82.819244° | arccos(1/9) 83.620630° | arccos(1/10) 84.260830° | arccos(1/n) |
| Dihedral angles bitrunc - trunc | arccos(-1/7) 98.213211° | arccos(-1/8) 97.180756° | arccos(-1/9) 96.379370° | arccos(-1/10) 95.739170° | arccos(-1/n) |
| Dihedral angles trunc - trunc | arccos(1/7) 81.786789° | arccos(1/8) 82.819244° | arccos(1/9) 83.620630° | arccos(1/10) 84.260830° | arccos(1/n) |
This case applies toodd dimensions only. These also occur (scaled down) as intersection kernels of facet-regularbi-simplex compounds.Further they occur (again scaled) as equatorial mid-sections of the vertex-first oriented (then even-dimensional)hypercube Cn+1.
Note that those can be generally provided too as next-to-center rectified simplex alterprismsoo3oo3...xo3ox...3oo3oo&#x (n-1 node positions).
| Dimension | 1D | 3D | 5D | 7D | 9D | nD (2k+1)D |
|---|---|---|---|---|---|---|
| Dynkin diagram | x | o3x3o | o3o3x3o3o | o3o3o3x3o3o3o | o3o3o3o3x3o3o3o3o | o3o...o3x3o...o3o |
| Acronym | line | oct | dot | he | icoy | mid-rect. n-simplex |
| Vertex Count | 2 | 6square | 20triddip | 70tetdip | 252pendip | (n+1)!/[((n+1)/2)!]2 (2(k+1))!/((k+1)!)2 |
| Facet Count | 4+4trig | 6+6rap | 8+8bril | 10+10trene | 2(n+1) 4(k+1) | |
| Circumradius | 1/2 0.5 | 1/sqrt(2) 0.707107 | sqrt(3)/2 0.866025 | 1 | sqrt(5)/2 1.118034 | sqrt[(n+1)/8] sqrt(k+1)/2 |
| Inradius | 1/2 0.5 | 1/sqrt(6) 0.408248 | sqrt(3/20) 0.387298 | 1/sqrt(7) 0.377964 | sqrt(5)/6 0.372678 | sqrt[(n+1)/(8n)] sqrt[(k+1)/(8k+4)] |
| Volume | 1 | sqrt(2)/3 0.471405 | 11 sqrt(3)/80 0.238157 | 151/1260 0.119841 | 15619 sqrt(5)/580608 0.060153 | ? |
| Surface | 2 | 2 sqrt(3) 3.464102 | 11 sqrt(5)/8 3.074593 | 151 sqrt(7)/180 2.219491 | ? | ? |
| Dihedral angles wrt. mid-rect margin | 0° | arccos(-1/3) 109.471221° | arccos(-1/5) 101.536959° | arccos(-1/7) 98.213211° | arccos(-1/9) 96.379370° | arccos(-1/n) |
| Dihedral angles wrt. offset margin | arccos(1/5) 78.463041° | arccos(1/7) 81.786789° | arccos(1/9) 83.620630° | arccos(1/n) |
This case applies toeven dimensions only. These also occur (scaled down) as intersection kernels of facet-regularbi-simplex compounds.Further they occur (again scaled) as equatorial mid-sections of the vertex-first oriented (then odd-dimensional)hypercube Cn+1.
| Dimension | 2D | 4D | 6D | 8D | 10D | nD (2k)D |
|---|---|---|---|---|---|---|
| Dynkin diagram | x3x | o3x3x3o | o3o3x3x3o3o | o3o3o3x3x3o3o3o | o3o3o3o3x3x3o3o3o3o | o3o...o3x3x3o...o3o |
| Acronym | hig | deca | fe | be | ? | mid-trunc. n-simplex |
| Vertex Count | 6 | 30 | 140 | 630 | 2772 | (n+1)!/((n/2)!)2 (2k+1)!/(k!)2 |
| Facet Count | 3+3line | 5+5tut | 7+7bittix | 9+9tattoc | 11+11? | 2(n+1) 2(2k+1) |
| Circumradius | 1 | sqrt(2) 1.414214 | sqrt(3) 1.732051 | 2 | sqrt(5) 2.236068 | sqrt(n/2) sqrt(k) |
| Inradius | sqrt(3)/2 0.866025 | sqrt(5/8) 0.790569 | sqrt(7/12) 0.763763 | 3/4 0.75 | sqrt(11/20) 0.741620 | sqrt[(n+1)/(2n)] sqrt[(2k+1)/(4k)] |
| Volume | 3 sqrt(3)/2 2.598076 | 115 sqrt(5)/48 5.357246 | 5887 sqrt(7)/1440 10.816346 | ? | ? | ? |
| Surface | 6 | 115 sqrt(2)/6 27.105760 | 5887 sqrt(3)/120 84.971526 | ? | ? | ? |
| Dihedral angles wrt. mid-trunc margin | 120° | arccos(-1/4) 104.477512° | arccos(-1/6) 99.594068° | arccos(-1/8) 97.180756° | arccos(-1/10) 95.739170° | arccos(-1/n) |
| Dihedral angles wrt. offset margin | arccos(1/4) 75.522488° | arccos(1/6) 80.405932° | arccos(1/8) 82.819244° | arccos(1/10) 84.260830° | arccos(1/n) |
The common unit circumradius of all these shows that they occur asvertex figure of an according dimensionalhoneycomb. In fact they are the hull-of-roots polytopes of the according dimensionalroot lattice An.Furthermore it forces that the facet-to-bodycenter pyramids all areCRF, i.e. that all these polytopes can bedecomposed accordingly.
Within these polytopes eSn generally can be described as thebistratic lace tower oftheregular simplex Sn-1 atop the maximal expanded simplex eSn-1 atop the dual regular simplex -Sn-1.Thence, by means of thelace tower notation,eSn = x3o...o3x (n nodes) can be described as well asxxo3ooo...ooo3oxx&#xt (n-1 node positions).Note that the midsection here is of the very same form eSn-1, just one dimension less. Therefore that mentioned unit circumradius property here simply follows by dimensional induction.
| Dimension | 1D | 2D | 3D | 4D | 5D | nD |
|---|---|---|---|---|---|---|
| Dynkin diagram | x3x | x3o3x | x3o3o3x | x3o3o3o3x | x3o3o...o3o3x | |
| Acronym | hig | co | spid | scad | max-exp. n-simplex | |
| Vertex Count | 6 | 12 | 20 | 30 | n(n+1) | |
| Facet Count simplex | 3+3line | 4+4trig | 5+5tet | 6+6pen | n+1 per type | |
| Facet Count prism | 6square | 10+10trip | 15+15tepe | n(n+1)/2 per type | ||
| Facet Count duoprism I | 20triddip | (n+1)n(n-1)/6 per type | ||||
| Circumradius | 1 | 1 | 1 | 1 | 1 | |
| Inradius wrt. simplex facets | sqrt(3)/2 0.866025 | sqrt(2/3) 0.816497 | sqrt(5/8) 0.790569 | sqrt(3/5) 0.774597 | sqrt[(n+1)/2n] | |
| Inradius wrt. prism facets | 1/sqrt(2) 0.707107 | sqrt(5/12) 0.645497 | sqrt(3/8) 0.612372 | sqrt[(n+1)/(4n-4)] | ||
| Inradius wrt. d.pr. I fac. | 1/sqrt(3) 0.577350 | sqrt[(n+1)/(6n-12)] | ||||
| Volume | 3 sqrt(3)/2 2.598076 | 5 sqrt(2)/3 2.357023 | 35 sqrt(5)/48 1.630466 | 21 sqrt(3)/40 0.909327 | (2n)! sqrt[(n+1)/(2n)]/(n!)3 | |
| Surface | 6 | 6+2 sqrt(3) 9.464102 | 5 sqrt(2)/6+5 sqrt(3) 9.838765 | (30+20 sqrt(2)+sqrt(5))/8 7.565042 | ? | |
| Dihedral angles simplex - (next) | 120° | arccos[-1/sqrt(3)] 125.264390° | arccos(-sqrt(3/8)) 127.761244° | arccos[-sqrt(2/5)] 129.231520° | arccos[-sqrt((n-1)/2n)] | |
| Dihedral angles prism - (next) | arccos(-2/3) 131.810315° | 135° | arccos[-sqrt((2n-4)/(3n-3)] | |||
| Dimension | 6D | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | x3o3o3o3o3x | x3o3o3o3o3o3x | x3o3o3o3o3o3o3x | x3o3o3o3o3o3o3o3x | x3o3o3o3o3o3o3o3o3x | x3o3o...o3o3x |
| Acronym | staf | suph | soxeb | ? | ? | max-exp. n-simplex |
| Vertex Count | 42 | 56 | 72 | 90 | 110 | n(n+1) |
| Facet Count simplex | 7+7hix | 8+8hop | 9+9oca | 10+10ene | 11+11day | n+1 per type |
| Facet Count prism | 21+21penp | 28+28hixip | 36+36hopip | 45+45ocpe | 55+55enep | (n+1)n/2 per type |
| Facet Count duoprism I | 35+35tratet | 56+56trapen | 84+84trahix | 120+120trihop | 165+165trioc | (n+1)n(n-1)/6 per type |
| Facet Count duoprism II | 70tetdip | 126+126tetpen | 210+210tethix | 330+330tethop | (n+1)n(n-1)(n-2)/24 per type | |
| Facet Count duoprism III | 252pendip | 462+462penhix | (n+1)n(n-1)(n-2)(n-3)/120 per type | |||
| Circumradius | 1 | 1 | 1 | 1 | 1 | 1 |
| Inradius wrt. simplex facets | sqrt(7/12) 0.763763 | 2/sqrt(7) 0.755929 | 3/4 0.75 | sqrt(5)/3 0.745356 | sqrt(11/20) 0.741620 | sqrt[(n+1)/2n] |
| Inradius wrt. prism facets | sqrt(7/20) 0.591608 | 1/sqrt(3) 0.577350 | 3/sqrt(28) 0.566947 | sqrt(5)/4 0.559017 | sqrt(11)/6 0.552771 | sqrt[(n+1)/(4n-4)] |
| Inradius wrt. d.pr. I fac. | sqrt(7/24) 0.540062 | 2/sqrt(15) 0.516398 | 1/2 0.5 | sqrt(5/21) 0.487950 | sqrt(11/48) 0.478714 | sqrt[(n+1)/(6n-12)] |
| Inradius wrt. d.pr. II fac. | 1/2 0.5 | 3/sqrt(40) 0.474342 | sqrt(5/24) 0.456435 | sqrt(11/56) 0.443203 | sqrt[(n+1)/(8n-24)] | |
| Inradius wrt. d.pr. III fac. | 1/sqrt(5) 0.447214 | sqrt(11/60) 0.428174 | sqrt[(n+1)/(10n-40)] | |||
| Volume | 77 sqrt(7)/480 0.424423 | 143/840 0.170238 | 429/7168 0.059849 | 2431 sqrt(5)/290304 0.018725 | 46189 sqrt(11)/29030400 0.0052769 | (2n)! sqrt[(n+1)/(2n)]/(n!)3 |
| Surface | 7[sqrt(3)+15 sqrt(5)+50 sqrt(6)]/240 4.600970 | [350+42 sqrt(3)+sqrt(7)+105 sqrt(15)]/360 2.311264 | ? | ? | ? | ? |
| Dihedral angles simplex - (next) | arccos[-sqrt(5/12)] 130.202966° | arccos[-sqrt(3/7)] 130.893395° | arccos[-sqrt(7)/4] 131.409622° | arccos(-2/3) 131.810315° | arccos[-3/sqrt(20)] 132.130415° | arccos[-sqrt((n-1)/2n)] |
| Dihedral angles prism - (next) | arccos[-sqrt(8/15)] 136.911277° | arccos[-sqrt(5)/3] 138.189685° | arccos[-2/sqrt(7)] 139.106605° | arccos[-sqrt(7/12)] 139.797034° | arccos[-4/sqrt(27)] 140.335965° | arccos[-sqrt((2n-4)/(3n-3))] |
| Dihedral angles d.pr. I - (next) | ? | ? | ? | ? | ? | ? |
| Dihedral angles d.pr. II - (next) | ? | ? | ? | ? | ||
| Dihedral angles d.pr. III - (next) | ? | ? |
Interestingly this class belongs to an even wider class of (then mostlyhyperbolic) polytopes which all have that common property that the nD (or rather: rank n) representant occurs asridge faceting midsection within the (n+1)D case (for the finite cases) resp. as aridge faceting subspace within the rank n+1 case (for the infinite cases). This then is the general maximal-expanded classxPo3o...o3oPx, or, even more general, the class ofcyclotruncatedxPo3o...o3oPxQ*a. Below is a small enlisting thereof.
xPo3o...o3oPxQ*a | |||||
| P = 3 | P = 4 | P = 5 | P = 6 | ||
| Q = 2 | r = 1x3o3x -cox3o3o3x -spidx3o3o3o3x -scadx3o3o3o3o3x -stafx3o3o3o3o3o3x -suphx3o3o3o3o3o3o3x -soxeb... | r = ∞x4o4x -squatx4o3o4x -chonx4o3o3o4x -testx4o3o3o3o4x -penthx4o3o3o3o3o4x -axhx4o3o3o3o3o3o4x -hepth... | r = sqrt[-(1+sqrt(5))/2] = 1.272020ix5o5x -tepetx5o3o5x -spiddedx5o3o3o5x... | r = sqrt(-1) = 1ix6o6x -tehatx6o3o6x -spiddihexah... | |
| Q = 3 | r = ∞x3o3x3*a -thatx3o3o3x3*a -batatohx3o3o3o3x3*a -cytopitx3o3o3o3o3x3*a -cytaxhx3o3o3o3o3o3x3*a -cytloh... | r = sqrt(-1) = 1ix4o4x3*a -tehatx4o3o4x3*a -cytochx4o3o3o4x3*a... | r = sqrt[-(sqrt(5)-1)/2] = 0.786151ix5o5x3*a -phatx5o3o5x3*a... | r = 1/sqrt(-2) = 0.707107ix6o6x3*a -shexat... | |
| Q = 4 | r = sqrt(-1) = 1ix3o3x4*a -tehatx3o3o3x4*a -cyticthx3o3o3o3x4*a... | r = 1/sqrt[-sqrt(2)] = 0.840896ix4o4x4*a -teoctx4o3o4x4*a... | r = sqrt[(3+sqrt(2)-sqrt(5)-sqrt(10))/2] = 0.701474i x5o5x4*a... | r = sqrt[-(sqrt(2)-1)] = 0.643594ix6o6x4*a... | |
These non-convex polytopes reSn generally are facetings of themaximal expanded simplexeSn.
While one third of the facets always are hemifacets and the second third could be considered to be prograde throughout,the remaining one would alternate wrt. its retrogradeness.Thence for the odd dimensional series members thevolume always results in zero.
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | o3x3x3/2*a | o3x3x3/2*a3o | o3x3x3/2*a3o3o | o3x3x3/2*a3o3o3o | o3x3x3/2*a3o...o3o |
| Acronym | oho | duhd | dehad | fohaf | retroexp. n-simplex |
| Vertex Count | 12 | 20 | 30 | 42 | n(n+1) |
| Facet Count simplex | 4+4trig | 5+5tet | 6+6pen | 7+7hix | n+1 (each) |
| Facet Count retroexp. simp. | 4hig | 5oho | 6duhd | 7dehad | n+1 |
| Circumradius | 1 | 1 | 1 | 1 | 1 |
| Inradius wrt. simplex facets | sqrt(2/3) 0.816497 | sqrt(5/8) 0.790569 | sqrt(3/5) 0.774597 | sqrt(7/12) 0.763763 | sqrt[(n+1)/2n] |
| Inradius wrt. retroexp. simp. | 0 | 0 | 0 | 0 | 0 |
| Volume | 0 | 5 sqrt(5)/8 0.232924 | 0 | 7 sqrt(7)/2880 0.0064306 | 0 / sqrt[(n+1)3/2n-2]/n! |
| Surface | 8 sqrt(3) 13.856406 | 5 sqrt(2)/6 1.178511 | 31 sqrt(5)/8 8.664763 | 7 sqrt(3)/240 0.050518 | ? |
| Dihedral angles sim. - r.exp. sim. | arccos(1/3) 70.528779° | arccos(1/4) 75.522488° | arccos(1/5) 78.463041° | arccos(1/6) 80.405932° | arccos(1/n) |
| Dihedral angles r.exp. s. - r.exp. s. | arccos(1/4) 75.522488° | arccos(1/5) 78.463041° | arccos(1/6) 80.405932° | arccos(1/n) | |
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | o3x3x3/2*a3o3o3o3o | o3x3x3/2*a3o3o3o3o3o | o3x3x3/2*a3o3o3o3o3o3o | o3x3x3/2*a3o3o3o3o3o3o3o | o3x3x3/2*a3o...o3o |
| Acronym | hehah | ? | ? | ? | retroexp. n-simplex |
| Vertex Count | 56 | 72 | 90 | 110 | n(n+1) |
| Facet Count simplex | 8+8hop | 9+9oca | 10+10ene | 11+11day | n+1 per type |
| Facet Count prism | 8fohaf | 9hehah | 10? | 11? | n+1 |
| Circumradius | 1 | 1 | 1 | 1 | 1 |
| Inradius wrt. simplex | 2/sqrt(7) 0.755929 | 3/4 0.75 | sqrt(5)/3 0.745356 | sqrt(11/20) 0.741620 | sqrt[(n+1)/2n] |
| Inradius wrt. retroexp. simp. | 0 | 0 | 0 | 0 | 0 |
| Volume | 0 | 3/35840 0.000083705 | 0 | 11 sqrt(11)/58060800 0.00000062836 | 0 / sqrt[(n+1)3/2n-2]/n! |
| Surface | ? | ? | ? | ? | ? |
| Dihedral angles sim. - r.exp. sim. | arccos(1/7) 81.786789° | arccos(1/8) 82.819244° | arccos(1/9) 83.620630° | arccos(1/10) 84.260830° | arccos(1/n) |
| Dihedral angles r.exp. sim. - r.exp. sim. | arccos(1/7) 81.786789° | arccos(1/8) 82.819244° | arccos(1/9) 83.620630° | arccos(1/10) 84.260830° | arccos(1/n) |
These polytopes otSn also are known aspermutotopes Pn+1 and in fact the set of their vertices each can be found to be in one-to-one correspondence, that is being mapped from and therefore being labeled by the permutations of the first n+1 natural numbersin such a way that the edges will represent the set oftranspositions (permutations of any 2 elements only).
This very labeling moreover shows that each otSn also can be represented within an n-dimensional subspace ofthe (n+1)-dimensional space, where that labeling just is given by the respective all-integer coordinates.In fact this representation then is nothing but a sqrt(2)-scaled version of otSn when being used asone of the facets of the also sqrt(2)-scaled otSn+1.
It further should be mentioned that otSn generally is also the Voronoi cell of theroot lattice An*. It therefore always allows for anoble periodic continuation as aeuclidean honeycomb, the Voronoi complex V(An*) =x3x3x3...x3*a.
| Dimension | 1D | 2D | 3D | 4D | 5D | nD |
|---|---|---|---|---|---|---|
| Dynkin diagram | x | x3x | x3x3x | x3x3x3x | x3x3x3x3x | x3x...x3x |
| Acronym | dyad | hig | toe | gippid | gocad | omnitr. n-simplex |
| Vertex Count | 2 | 6 | 24 | 120 | 720 | (n+1)! |
| Facet Count wrt. type 1 | 2vertex | 3line | 4hig | 5toe | 6gippid | n+1 (n+1)!/[n! 1!] |
| Facet Count wrt. type 2 | 3line | 6square | 10hip | 15tope | n(n+1)/2 (n+1)!/[(n-1)! 2!] | |
| Facet Count wrt. type 3 | 4hig | 10hip | 20hiddip | (n+1)!/[(n-2)! 3!] | ||
| Facet Count wrt. type 4 | 5toe | 15tope | (n+1)!/[(n-3)! 4!] | |||
| Facet Count wrt. type 5 | 6gippid | (n+1)!/[(n-4)! 5!] | ||||
| Circumradius | 1/2 0.5 | 1 | sqrt(5/2) 1.581139 | sqrt(5) 2.236068 | sqrt(35)/2 2.958040 | sqrt[(n+2)!/((n-1)! 4!)] |
| Inradius wrt. facet type 1 | 1/2 0.5 | sqrt(3)/2 0.866025 | sqrt(3/2) 1.224745 | sqrt(5/2) 1.581139 | sqrt(15)/2 1.936492 | sqrt[(n2+n)/8] |
| Inradius wrt. facet type 2 | sqrt(3)/2 0.866025 | sqrt(2) 1.414214 | sqrt(15)/2 1.936492 | sqrt(6) 2.449490 | sqrt(n2-1)/2 | |
| Inradius wrt. facet type 3 | sqrt(3/2) 1.224745 | sqrt(15)/2 1.936492 | sqrt(27)/2 2.598076 | sqrt[3(n2-n-2)/8] | ||
| Inradius wrt. facet type 4 | sqrt(5/2) 1.581139 | sqrt(6) 2.449490 | sqrt[(n2-2n-3)/2] | |||
| Inradius wrt. facet type 5 | sqrt(15)/2 1.936492 | sqrt[5(n2-3n-4)/8] | ||||
| Volume | 1 | 3 sqrt(3)/2 2.598076 | 8 sqrt(2) 11.313708 | 125 sqrt(5)/4 69.877124 | 324 sqrt(3) 561.184462 | (n+1)n-1 sqrt[(n+1)/(2n)] |
| Surface | 2 | 6 | 6+12 sqrt(3) 26.784610 | ? | ? | ? |
| Dihedral angles types 1 - 2 | 120° | arccos[-1/sqrt(3)] 125.264390° | arccos[-sqrt(3/8)] 127.761244° | arccos[-sqrt(2/5)] 129.231520° | arccos[-sqrt((n-1)/2n)] | |
| Dihedral angles types 1 - 3 | arccos(-1/3) 109.471221° | arccos[-1/sqrt(6)] 114.094843° | arccos[-1/sqrt(5)] 116.565051° | ? | ||
| Dihedral angles types 1 - 4 | arccos(-1/4) 104.477512° | arccos[-1/sqrt(10)] 108.434949° | ? | |||
| Dihedral angles types 1 - 5 | arccos(-1/5) 101.536959° | ? | ||||
| Dihedral angles types 2 - 3 | arccos[-1/sqrt(3)] 125.264390° | arccos(-2/3) 131.810315° | 135° | arccos[-sqrt([2(n-2)]/[3(n-1)])] | ||
| Dihedral angles types 2 - 4 | arccos[-1/sqrt(6)] 114.094843° | 120° | ? | |||
| Dihedral angles types 2 - 5 | arccos[-1/sqrt(10)] 108.434949° | ? | ||||
| Dihedral angles types 3 - 4 | arccos[-sqrt(3/8)] 127.761244° | 135° | arccos[-sqrt([3(n-3)]/[4(n-2)])] | |||
| Dihedral angles types 3 - 5 | arccos[-1/sqrt(5)] 116.565051° | ? | ||||
| Dihedral angles types 4 - 5 | arccos[-sqrt(2/5)] 129.231520° | arccos[-sqrt([4(n-4)]/[5(n-3)])] | ||||
| Dimension | 6D | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | x3x3x3x3x3x | x3x3x3x3x3x3x | x3x3x3x3x3x3x3x | x3x3x3x3x3x3x3x3x | x3x3x3x3x3x3x3x3x3x | x3x...x3x |
| Acronym | gotaf | guph | goxeb | ? | ? | omnitr. n-simplex |
| Vertex Count | 5040 | 40320 | 362880 | 3628800 | 39916800 | (n+1)! |
| Facet Count wrt. type 1 | 7gocad | 8gotaf | 9guph | 10goxeb | 11? | n+1 (n+1)!/[n! 1!] |
| Facet Count wrt. type 2 | 21gippiddip | 28gocadip | 36gotafip | 45guphip | 55? | n(n+1)/2 (n+1)!/[(n-1)! 2!] |
| Facet Count wrt. type 3 | 35hatoe | 56hagippid | 84hagocad | 120hagotaf | 165haguph | (n+1)!/[(n-2)! 3!] |
| Facet Count wrt. type 4 | 35hatoe | 70toedip | 126toegippid | 210toegocad | 330toegotaf | (n+1)!/[(n-3)! 4!] |
| Facet Count wrt. type 5 | 21gippiddip | 56hagippid | 126toegippid | 252? | 462? | (n+1)!/[(n-4)! 5!] |
| Facet Count wrt. type 6 | 7gocad | 28gocadip | 84hagocad | 210toegocad | 462? | (n+1)!/[(n-5)! 6!] |
| Facet Count wrt. type 7 | 8gotaf | 36gotafip | 120hagotaf | 330toegotaf | (n+1)!/[(n-6)! 7!] | |
| Facet Count wrt. type 8 | 9guph | 45guphip | 165haguph | (n+1)!/[(n-7)! 8!] | ||
| Facet Count wrt. type 9 | 10goxeb | 55? | (n+1)!/[(n-8)! 9!] | |||
| Facet Count wrt. type 10 | 11? | (n+1)!/[(n-9)! 10!] | ||||
| Circumradius | sqrt(14) 3.741657 | sqrt(21) 4.582576 | sqrt(30) 5.477226 | sqrt(165)/2 6.422616 | sqrt(55) 7.416198 | sqrt[(n+2)!/((n-1)! 4!)] |
| Inradius wrt. facet type 1 | sqrt(21)/2 2.291288 | sqrt(7) 2.645751 | 3 | 3 sqrt(5)/2 3.354102 | sqrt(55)/2 3.708099 | sqrt[(n2+n)/8] |
| Inradius wrt. facet type 2 | sqrt(35)/2 2.958040 | 2 sqrt(3) 3.464102 | sqrt(63)/2 3.968627 | 2 sqrt(5) 4.472136 | 3 sqrt(11)/2 4.974937 | sqrt(n2-1)/2 |
| Inradius wrt. facet type 3 | sqrt(21/2) 3.240370 | sqrt(15) 3.872983 | 9/2 4.5 | sqrt(105)/2 5.123475 | sqrt(33) 5.744563 | sqrt[3(n2-n-2)/8] |
| Inradius wrt. facet type 4 | sqrt(21/2) 3.240370 | 4 | 3 sqrt(5/2) 4.743416 | sqrt(30) 5.477226 | sqrt(77/2) 6.204837 | sqrt[(n2-2n-3)/2] |
| Inradius wrt. facet type 5 | sqrt(35)/2 2.958040 | sqrt(15) 3.872983 | 3 sqrt(5/2) 4.743416 | 5 sqrt(5)/2 5.590170 | sqrt(165)/2 6.422616 | sqrt[5(n2-3n-4)/8] |
| Inradius wrt. facet type 6 | sqrt(21)/2 2.291288 | 2 sqrt(3) 3.464102 | 9/2 4.5 | sqrt(30) 5.477226 | sqrt(165)/2 6.422616 | sqrt[3(n2-4n-5)]/2 |
| Inradius wrt. facet type 7 | sqrt(7) 2.645751 | sqrt(63)/2 3.968627 | sqrt(105)/2 5.123475 | sqrt(77/2) 6.204837 | sqrt[7(n2-5n-6)/8] | |
| Inradius wrt. facet type 8 | 3 | 2 sqrt(5) 4.472136 | sqrt(33) 5.744563 | sqrt(n2-6n-7) | ||
| Inradius wrt. facet type 9 | 3 sqrt(5)/2 3.354102 | 3 sqrt(11)/2 4.974937 | 3 sqrt[(n2-7n-8)/8] | |||
| Inradius wrt. facet type 10 | sqrt(55)/2 3.708099 | sqrt[5(n2-8n-9)]/2 | ||||
| Volume | 16807 sqrt(7)/8 5558.392786 | 65536 | 14348907/16 896806.6875 | ? | ? | (n+1)n-1 sqrt[(n+1)/(2n)] |
| Surface | ? | ? | ? | ? | ? | ? |
| Dihedral angles types 1 - 2 | arccos[-sqrt(5/12)] 130.202966° | arccos[-sqrt(3/7)] 130.893395° | arccos[-sqrt(7)/4] 131.409622° | arccos(-2/3) 131.810315° | arccos[-3/sqrt(20)] 132.130415° | arccos[-sqrt((n-1)/2n)] |
| Dihedral angles types 1 - 3 | ? | ? | ? | ? | ? | ? |
| Dihedral angles types 1 - 4 | ? | ? | ? | ? | ? | ? |
| Dihedral angles types 1 - 5 | ? | ? | ? | ? | ? | ? |
| Dihedral angles types 1 - 6 | ? | ? | ? | ? | ? | ? |
| Dihedral angles types 1 - 7 | ? | ? | ? | ? | ? | |
| Dihedral angles types 1 - 8 | ? | ? | ? | ? | ||
| Dihedral angles types 1 - 9 | ? | ? | ? | |||
| Dihedral angles types 1 - 10 | ? | ? | ||||
| Dihedral angles types 2 - 3 | arccos[-sqrt(8/15)] 136.911277° | arccos[-sqrt(5)/3] 138.189685° | arccos[-2/sqrt(7)] 139.106605° | arccos[-sqrt(7/12)] 139.797034° | arccos[-4/sqrt(27)] 140.335965° | arccos[-sqrt([2(n-2)]/[3(n-1)])] |
| Dihedral angles types 2 - 4 | ? | ? | ? | ? | ? | ? |
| Dihedral angles types 2 - 5 | ? | ? | ? | ? | ? | ? |
| Dihedral angles types 2 - 6 | ? | ? | ? | ? | ? | ? |
| Dihedral angles types 2 - 7 | ? | ? | ? | ? | ? | |
| Dihedral angles types 2 - 8 | ? | ? | ? | ? | ||
| Dihedral angles types 2 - 9 | ? | ? | ? | |||
| Dihedral angles types 2 - 10 | ? | ? | ||||
| Dihedral angles types 3 - 4 | arccos(-3/4) 138.590378° | arccos[-sqrt(3/5)] 140.768480° | arccos[-sqrt(5/8)] 142.238756° | arccos[-3/sqrt(14)] 143.300775° | arccos[-sqrt(21/32)] 144.104978° | arccos[-sqrt([3(n-3)]/[4(n-2)])] |
| Dihedral angles types 3 - 5 | ? | ? | ? | ? | ? | ? |
| Dihedral angles types 3 - 6 | ? | ? | ? | ? | ? | ? |
| Dihedral angles types 3 - 7 | ? | ? | ? | ? | ? | |
| Dihedral angles types 3 - 8 | ? | ? | ? | ? | ||
| Dihedral angles types 3 - 9 | ? | ? | ? | |||
| Dihedral angles types 3 - 10 | ? | ? | ||||
| Dihedral angles types 4 - 5 | arccos[-sqrt(8/15)] 136.911277° | arccos[-sqrt(3/5)] 140.768480° | arccos(-4/5) 143.130102° | arccos[-sqrt(2/3)] 144.735610° | arccos[-sqrt(24/35)] 145.901874° | arccos[-sqrt([4(n-4)]/[5(n-3)])] |
| Dihedral angles types 4 - 6 | ? | ? | ? | ? | ? | ? |
| Dihedral angles types 4 - 7 | ? | ? | ? | ? | ? | |
| Dihedral angles types 4 - 8 | ? | ? | ? | ? | ||
| Dihedral angles types 4 - 9 | ? | ? | ? | |||
| Dihedral angles types 4 - 10 | ? | ? | ||||
| Dihedral angles types 5 - 6 | arccos[-sqrt(5/12)] 130.202966° | arccos[-sqrt(5)/3] 138.189685° | arccos[-sqrt(5/8)] 142.238756° | arccos[-sqrt(2/3)] 144.735610° | arccos(-5/6) 146.442690° | arccos[-sqrt([5(n-5)]/[6(n-4)])] |
| Dihedral angles types 5 - 7 | ? | ? | ? | ? | ? | |
| Dihedral angles types 5 - 8 | ? | ? | ? | ? | ||
| Dihedral angles types 5 - 9 | ? | ? | ? | |||
| Dihedral angles types 5 - 10 | ? | ? | ||||
| Dihedral angles types 6 - 7 | arccos[-sqrt(3/7)] 130.893395° | arccos[-2/sqrt(7)] 139.106605° | arccos[-3/sqrt(14)] 143.300775° | arccos[-sqrt(24/35)] 145.901874° | arccos[-sqrt([6(n-6)]/[7(n-5)])] | |
| Dihedral angles types 6 - 8 | ? | ? | ? | ? | ||
| Dihedral angles types 6 - 9 | ? | ? | ? | |||
| Dihedral angles types 6 - 10 | ? | ? | ||||
| Dihedral angles types 7 - 8 | arccos[-sqrt(7)/4] 131.409622° | arccos[-sqrt(7/12)] 139.797034° | arccos[-sqrt(21/32)] 144.104978° | arccos[-sqrt([7(n-7)]/[8(n-6)])] | ||
| Dihedral angles types 7 - 9 | ? | ? | ? | |||
| Dihedral angles types 7 - 10 | ? | ? | ||||
| Dihedral angles types 8 - 9 | arccos(-2/3) 131.810315° | arccos[-4/sqrt(27)] 140.335965° | arccos[-sqrt([8(n-8)]/[9(n-7)])] | |||
| Dihedral angles types 8 - 10 | ? | ? | ||||
| Dihedral angles types 9 - 10 | arccos[-3/sqrt(20)] 132.130415° | arccos[-sqrt([9(n-9)]/[10(n-8)])] |
These polytopes are closely related to thetegum product.In fact On here is nothing but the On-1bipyramid. Thence, by means of thetegum sum notation,On = x3o...o3o4o (n nodes) can be described as well asqo ox3oo...oo3oo4oo&#zx (n node positions).
On the other hand these polytopes On generally can also be described as thesegmentotope oftheregular simplex Sn-1 atop the dual simplex -Sn-1.Thence, by means of thelace prism notation,On = x3o...o3o4o (n nodes) can be described as well asxo3oo...oo3ox&#x (n-1 node positions).
The regular Orthoplex On generally is the dual of theregular hypercube Cn.
| Dimension | 1D | 2D | 3D | 4D | 5D | nD |
|---|---|---|---|---|---|---|
| Dynkin diagram | q | x4o | x3o4o | x3o3o4o | x3o3o3o4o | x3o...o3o4o |
| Acronym | q-line | square | oct | hex | tac | n-orthoplex |
| Vertex Count | 2 | 4q-line | 6square | 8oct | 10hex | 2n |
| Facet Count | 4line | 8trig | 16tet | 32pen | 2n | |
| Circumradius | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 |
| Inradius | 1/sqrt(2) 0.707107 | 1/2 0.5 | 1/sqrt(6) 0.408248 | 1/sqrt(8) 0.353553 | 1/sqrt(10) 0.316228 | 1/sqrt(2n) |
| Volume | sqrt(2) 1.414214 | 1 | sqrt(2)/3 0.471405 | 1/6 0.166667 | sqrt(2)/30 0.047140 | sqrt(2n)/n! |
| Surface | 2 | 4 | 2 sqrt(3) 3.464102 | 4 sqrt(2)/3 1.885618 | sqrt(5)/3 0.745356 | 2 sqrt[2n-1 n]/(n-1)! |
| Dihedral angles | 0° | 90° | arccos(-1/3) 109.471221° | 120° | arccos(-3/5) 126.869898° | arccos(2/n - 1) |
| Dimension | 6D | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | x3o3o3o3o4o | x3o3o3o3o3o4o | x3o3o3o3o3o3o4o | x3o3o3o3o3o3o3o4o | x3o3o3o3o3o3o3o3o4o | x3o...o3o4o |
| Acronym | gee | zee | ek | vee | ka | n-simplex |
| Vertex Count | 12tac | 14gee | 16zee | 18ek | 20vee | 2n |
| Facet Count | 64hix | 128hop | 256oca | 512ene | 1024day | 2n |
| Circumradius | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 |
| Inradius | 1/sqrt(12) 0.288675 | 1/sqrt(14) 0.267261 | 1/4 0.25 | 1/sqrt(18) 0.235702 | 1/sqrt(20) 0.223607 | 1/sqrt(2n) |
| Volume | 1/90 0.011111 | sqrt(2)/630 0.0022448 | 1/2520 0.00039683 | sqrt(2)/22680 0.000062355 | 1/113400 0.0000088183 | sqrt(2n)/n! |
| Surface | 2 sqrt(3)/15 0.230940 | sqrt(7)/45 0.058794 | 4/315 0.012698 | 1/420 0.0023810 | sqrt(5)/5670 0.00039437 | 2 sqrt[2n-1 n]/(n-1)! |
| Dihedral angles | arccos(-2/3) 131.810315° | arccos(-5/7) 135.584691° | arccos(-3/4) 138.590378° | arccos(-7/9) 141.057559° | arccos(-4/5) 143.130102° | arccos(2/n - 1) |
Interestingly this class belongs to an even wider class of (then mostlyhyperbolic) polytopes which all have that common property that the nD (or rather: rank n) representant occurs asridge faceting midsection within the (n+1)D case (for the finite cases) resp. as aridge faceting subspace within the rank n+1 case (for the infinite cases). This then is the general regular class of theregularxPo3o...o3o4o. Within this class it happens moreover generally that this subspace additionally acts as a true mirror of symmetry.Below is a small enlisting thereof.
xPo3o...o3o4o | |||
| P = 3 | P = 4 | P = 5 | P = 6 |
|---|---|---|---|
r = 1/sqrt(2) = 0.707107x3o4o -octx3o3o4o -hexx3o3o3o4o -tacx3o3o3o3o4o -geex3o3o3o3o3o4o -zeex3o3o3o3o3o3o4o -ekx3o3o3o3o3o3o3o4o -veex3o3o3o3o3o3o3o3o4o -ka... | r = ∞x4o4o -squatx4o3o4o -chonx4o3o3o4o -testx4o3o3o3o4o -penthx4o3o3o3o3o4o -axhx4o3o3o3o3o3o4o -hepth... | r = sqrt[-1-sqrt(5)]/2 = 0.899454ix5o4o -peatx5o3o4o -doehonx5o3o3o4o -shitte... | r = 1/sqrt(-2) = 0.707107ix6o4o -shexatx6o3o4o -shexah... |
These polytopes are closely related to theprism product.In fact Cn generally can be described as the Cn-1-prism, i.e. thesegmentotope ofthe regular hypercube Cn-1 atop the (identical) hypercube Cn-1.Thence, by means of thelace prism notation,Cn = o3o...o3o4x (n nodes) can be described as well asoo3oo...oo3oo4xx&#x (n-1 node positions).
The regular hypercube Cn generally is the dual of theregular orthoplex On.
| Dimension | 1D | 2D | 3D | 4D | 5D | nD |
|---|---|---|---|---|---|---|
| Dynkin diagram | x | o4x | o3o4x | o3o3o4x | o3o3o3o4x | o3o...o3o4x |
| Acronym | line | square | cube | tes | pent | n-hypercube |
| Vertex Count | 2 | 4q-line | 8q-trig | 16q-tet | 32q-pen | 2n |
| Facet Count | 4line | 6square | 8cube | 10tes | 2n | |
| Circumradius | 1/2 0.5 | 1/sqrt(2) 0.707107 | sqrt(3)/2 0.866025 | 1 | sqrt(5)/2 1.118034 | sqrt(n)/2 |
| Inradius | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 |
| Volume | 1 | 1 | 1 | 1 | 1 | 1 |
| Surface | 2 | 4 | 6 | 8 | 10 | 2n |
| Dihedral angles | 0° | 90° | 90° | 90° | 90° | 90° |
| Dimension | 6D | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | o3o3o3o3o4x | o3o3o3o3o3o4x | o3o3o3o3o3o3o4x | o3o3o3o3o3o3o3o4x | o3o3o3o3o3o3o3o3o4x | o3o...o3o4x |
| Acronym | ax | hept | octo | enne | deker | n-hypercube |
| Vertex Count | 64q-hix | 128q-hop | 256q-oca | 512q-ene | 1024q-day | 2n |
| Facet Count | 12pent | 14ax | 16hept | 18octo | 20enne | 2n |
| Circumradius | sqrt(3/2) 1.224745 | sqrt(7)/2 1.322876 | sqrt(2) 1.414214 | 3/2 1.5 | sqrt(5/2) 1.581139 | sqrt(n)/2 |
| Inradius | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 |
| Volume | 1 | 1 | 1 | 1 | 1 | 1 |
| Surface | 12 | 14 | 16 | 18 | 20 | 2n |
| Dihedral angles | 90° | 90° | 90° | 90° | 90° | 90° |
The common unit circumradius of all these shows that they occur asvertex figure of an according dimensionalhoneycomb. In fact they are the hull-of-large-roots polytopes of the according dimensionalroot lattice Cn(or equivalently the hull-of-small-roots polytopes of the according dimensionalroot lattice Bn).Furthermore it forces that the facet-to-bodycenter pyramids all areCRF, i.e. that all these polytopes can bedecomposed accordingly.
Within these polytopes rOn generally can be described as thebistratic lace towerof theregular orthoplex On-1 atop the rectified orthoplex rOn-1 atop the regular orthoplex On-1.Thence, by means of thelace tower notation,rOn = o3x3o...o3o4o (n nodes) can be described as well asxox3oxo3ooo...ooo3ooo4ooo&#xt (n-1 node positions).
On the other hand these polytopes rOn generally can also be described within a different orientation as thebistratic lace tower of therectified simplex rSn-1 atop themaximal-expanded simplexeSn-1 atop the inverted rectified simplex -rSn-1.Thence, by means of thelace tower notation,rOn = o3x3o...o3o4o (n nodes) can be described as well asoxo3xoo3ooo...ooo3oox3oxo&#xt (n-1 node positions).As the according midsection therefore generally is eSn-1, and those polytopes already where mentioned to have this unit circumradius property,it becomes apparent that this property here applies as well.
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | o3x4o | o3x3o4o | o3x3o3o4o | o3x3o3o3o4o | o3x3o...o3o4o |
| Acronym | co | ico | rat | rag | rect. n-orthoplex |
| Vertex Count | 12x2q | 24cube | 40ope | 60hexip | 2n(n-1) |
| Facet Count rect. facets | 8trig | 16oct | 32rap | 64rix | 2n |
| Facet Count verf facets | 6square | 8oct | 10hex | 12tac | 2n |
| Circumradius | 1 | 1 | 1 | 1 | 1 |
| Inradius wrt. rect. facets | sqrt(2/3) 0.816497 | 1/sqrt(2) 0.707107 | sqrt(2/5) 0.632456 | 1/sqrt(3) 0.577350 | sqrt(2/n) |
| Inradius wrt. verf facets | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 |
| Volume | 5 sqrt(2)/3 2.357023 | 2 | 9 sqrt(2)/10 1.272792 | 29/45 0.644444 | (2n-n) sqrt(2n)/n! |
| Surface | 6+2 sqrt(3) 9.464102 | 8 sqrt(2) 11.313708 | (5+11 sqrt(5))/3 9.865583 | (6 sqrt(2)+52 sqrt(3))/15 6.570128 | 2 [n+(2n-1-n) sqrt(n)] sqrt(2n-1)/(n-1)! |
| Dihedral angles rect. - orthopl. | arccos[-1/sqrt(3)] 125.264390° | 120° | arccos[-1/sqrt(5)] 116.565051° | arccos[-1/sqrt(6)] 114.094843° | arccos[-1/sqrt(n)] |
| Dihedral angles rect. - rect. | arccos(-3/5) 126.869898° | arccos(-2/3) 131.810315° | arccos(2/n - 1) | ||
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | o3x3o3o3o3o4o | o3x3o3o3o3o3o4o | o3x3o3o3o3o3o3o4o | o3x3o3o3o3o3o3o3o4o | o3x3o...o3o4o |
| Acronym | rez | rek | riv | rake | rect. n-orthoplex |
| Vertex Count | 84taccup | 112geep | 144zeep | 180ekip | 2n(n-1) |
| Facet Count rect. facets | 128ril | 256roc | 512rene | 1024reday | 2n |
| Facet Count verf facets | 14gee | 16zee | 18ek | 20vee | 2n |
| Circumradius | 1 | 1 | 1 | 1 | 1 |
| Inradius wrt. rect. facets | sqrt(2/7) 0.534522 | 1/2 0.5 | sqrt(2)/3 0.471405 | 1/sqrt(5) 0.447214 | sqrt(2/n) |
| Inradius wrt. verf facets | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 |
| Volume | 121 sqrt(2)/630 0.271619 | 31/315 0.098413 | 503 sqrt(2)/22680 0.031365 | 169/18900 0.0089418 | (2n-n) sqrt(2n)/n! |
| Surface | (7+57 sqrt(7))/45 3.506841 | (480+8 sqrt(2))/315 1.559726 | 25/42 0.595238 | [5 sqrt(2)+502 sqrt(5)]/5760 0.199220 | 2 [n+(2n-1-n) sqrt(n)] sqrt(2n-1)/(n-1)! |
| Dihedral angles rect. - orthopl. | arccos[-1/sqrt(7)] 112.207654° | arccos[-1/sqrt(8)] 110.704811° | arccos(-1/3) 109.471221° | arccos[-1/sqrt(10)] 108.434949° | arccos[-1/sqrt(n)] |
| Dihedral angles rect. - rect. | arccos(-5/7) 135.584691° | arccos(-3/4) 138.590378° | arccos(-7/9) 141.057559° | arccos(-4/5) 143.130102° | arccos(2/n - 1) |
Within these polytopes rCn generally can be described as thebistratic lace towerof the rectified hypercube rCn-1 atop the q-scaledhypercube Cn-1 atop the (alike oriented) rectified hypercube rCn-1.Thence, by means of thelace tower notation,rCn = o3o...o3x4o (n nodes) can be described as well asooo3ooo...ooo3xox4oqo&#xt (n-1 node positions).
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | o3x4o | o3o3x4o | o3o3o3x4o | o3o3o3o3x4o | o3o...o3x4o |
| Acronym | co | rit | rin | rax | rect. n-hypercube |
| Vertex Count | 12x q | 32o3x q | 80o3o3x q | 192o3o3o3x q | n 2n-1 |
| Facet Count rect. facets | 6square | 8co | 10rit | 12rin | 2n |
| Facet Count verf facets | 8trig | 16tet | 32pen | 64hix | 2n |
| Circumradius | 1 | sqrt(3/2) 1.224745 | sqrt(2) 1.414214 | sqrt(5/2) 1.581139 | sqrt[(n-1)/2] |
| Inradius wrt. rect. facets | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 |
| Inradius wrt. verf facets | sqrt(2/3) 0.816497 | 3/sqrt(8) 1.060660 | sqrt(8/5) 1.264911 | 5/sqrt(12) 1.443376 | (n-1)/sqrt(2n) |
| Volume | 5 sqrt(2)/3 2.357023 | 23/6 3.833333 | 119 sqrt(2)/30 5.609714 | 719/90 7.988889 | (n!-1) sqrt(2n)/n! |
| Surface | 6+2 sqrt(3) 9.464102 | 44 sqrt(2)/3 20.741799 | (115+sqrt(5))/3 39.078689 | (714 sqrt(2)+2 sqrt(3))/15 67.547506 | [n!-n+sqrt(n)] sqrt(2n+1)/(n-1)! |
| Dihedral angles rect. - simplex | arccos[-1/sqrt(3)] 125.264390° | 120° | arccos[-1/sqrt(5)] 116.565051° | arccos[-1/sqrt(6)] 114.094843° | arccos[-1/sqrt(n)] |
| Dihedral angles rect. - rect. | 90° | 90° | 90° | 90° | |
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | o3o3o3o3o3x4o | o3o3o3o3o3o3x4o | o3o3o3o3o3o3o3x4o | o3o3o3o3o3o3o3o3x4o | o3o...o3x4o |
| Acronym | rasa | recto | ren | rade | rect. n-hypercube |
| Vertex Count | 448 | 1024 | 2304 | 5120 | n 2n-1 |
| Facet Count rect. facets | 14rax | 16rasa | 18recto | 20ren | 2n |
| Facet Count verf facets | 128hop | 256oca | 512ene | 1024day | 2n |
| Circumradius | sqrt(3) 1.732051 | sqrt(7/2) 1.870829 | 2 | 3/sqrt(2) 2.121320 | sqrt[(n-1)/2] |
| Inradius wrt. rect. facets | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 |
| Inradius wrt. verf facets | 6/sqrt(14) 1.603567 | 7/4 1.75 | 8/sqrt(18) 1.885618 | 9/sqrt(20) 2.012461 | (n-1)/sqrt(2n) |
| Volume | 5039 sqrt(2)/630 11.311464 | 40319/2520 15.999603 | 362879 sqrt(2)/22680 22.627355 | 3628799/113400 31.999991 | (n!-1) sqrt(2n)/n! |
| Surface | (5033+sqrt(7)/45 111.903239 | (4+40312 sqrt(2))/315 180.996118 | 60479/210 287.995238 | (1814395 sqrt(2)+sqrt(5))/5670 452.547487 | [n!-n+sqrt(n)] sqrt(2n+1)/(n-1)! |
| Dihedral angles rect. - orthopl. | arccos[-1/sqrt(7)] 112.207654° | arccos[-1/sqrt(8)] 110.704811° | arccos(-1/3) 109.471221° | arccos[-1/sqrt(10)] 108.434949° | arccos[-1/sqrt(n)] |
| Dihedral angles rect. - rect. | 90° | 90° | 90° | 90° | 90° |
These non-convex polytopes frCn generally are facetings of therectified hypercube rCn.
Facets here always come within pairs – except for the hemifacets, which occur for the odd dimensional series members. Subsequent ones always alternate between prograde and retrograde. Thence for these odd dimensional series members thevolume always results in zero,as the facet pyramids of those hemifacets clearly are degenerate, while the other ones cancel out by means of those pairings, then using a prograde and a retrograde base respectively. For the even dimensional series members however, due to the missing hemifacets,those pairings will be either both pro- or both retrograde.
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | x3x3/2o3*a | x3x3/2o3o3*a | x3x3/2o3o3o3*a | x3x3/2o3o3o3o3*a | x3x3/2o3o...o3*a |
| Acronym | oho | firt | firn | forx | facetorect. n-hyp.c. |
| Vertex Count | 12 | 32 | 80 | 192 | n 2n-1 |
| Facet Count simplex | 4+4trig | 8+8tet | 16+16pen | 32+32hix | 2n-1 (each) |
| Facet Count trunc. simp. | 4hig | 8+8tut | 16+16tip | 32+32tix | 2n-1 (each) |
| Facet Count bitrunc. simp. | 16deca | 32+32bittix | 2n-1 (each) | ||
| Circumradius | 1 | sqrt(3/2) 1.224745 | sqrt(2) 1.414214 | sqrt(5/2) 1.581139 | sqrt[(n-1)/2] |
| Inradius wrt. simplex | +/− sqrt(2/3) 0.816497 | −/− 3/sqrt(8) 1.060660 | +/− sqrt(8/5) 1.264911 | +/+ 5/sqrt(12) 1.443376 | (n-1)/sqrt(2n) |
| Inradius wrt. trunc. simp. | 0 | +/+ 1/sqrt(8) 0.353553 | −/+ sqrt(2/5) 0.632456 | −/− sqrt(3)/2 0.866025 | (n-3)/sqrt(2n) |
| Inradius wrt. bitrunc. simp. | 0 | +/+ 1/sqrt(12) 0.288675 | (n-5)/sqrt(2n) | ||
| Volume | 0 | 10/3 3.333333 | 0 | 488/45 10.844444 | 0 / ? |
| Surface | 8 sqrt(3) 13.856406 | 32 sqrt(2) 45.254834 | 64 sqrt(5) 143.108351 | 256 sqrt(3) 443.405007 | sqrt(n 8n-1) |
| Dihedral angles sim. - trunc.sim. | arccos(1/3) 70.528779° | 60° | arccos(3/5) 53.130102° | arccos(2/3) 48.189685° | arccos[(n-2)/n] |
| Dihedral angles tr.sim. - bitr.sim. | arccos(3/5) 53.130102° | arccos(2/3) 48.189685° | arccos[(n-2)/n] | ||
| Dihedral angles k-tr.s. -k-tr.s. | 60° | arccos(2/3) 48.189685° | arccos[(n-2)/n] n 2(k+1) | ||
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | x3x3/2o3o3o3o3o3*a | x3x3/2o3o3o3o3o3o3*a | x3x3/2o3o3o3o3o3o3o3*a | x3x3/2o3o3o3o3o3o3o3o3*a | x3x3/2o3o...o3*a |
| Acronym | frasa | fro | fren | frade | facetorect. n-hyp.c. |
| Vertex Count | 448 | 1024 | 2304 | 5120 | n 2n-1 |
| Facet Count simplex | 64+64hop | 128+128oca | 256+256ene | 512+512day | 2n-1 (each) |
| Facet Count trunc. simp. | 64+64til | 128+128toc | 256+256tene | 512+512teday | 2n-1 (each) |
| Facet Count bitrunc. simp. | 64+64batal | 128+128bittoc | 256+256batene | 512+512biteday | 2n-1 (each) |
| Facet Count tritrunc. simp. | 64fe | 128+128tattoc | 256+256tatene | 512+512tatday (?) | 2n-1 (each) |
| Facet Count quadritr. simp. | 256be | 512+512quatday (?) | 2n-1 (each) | ||
| Circumradius | sqrt(3) 1.732051 | sqrt(7/2) 1.870829 | 2 | 3/sqrt(2) 2.121320 | sqrt[(n-1)/2] |
| Inradius wrt. simplex | +/− sqrt(18/7) 1.603567 | −/− 7/4 1.75 | +/− sqrt(32)/3 1.885618 | +/+ 9/sqrt(20) 2.012461 | (n-1)/sqrt(2n) |
| Inradius wrt. trunc. simpl. | −/+ sqrt(8/7) 1.069045 | +/+ 5/4 1.25 | −/+ sqrt(2) 1.414214 | −/− 7/sqrt(20) 1.565248 | (n-3)/sqrt(2n) |
| Inradius wrt. bitrunc. simpl. | +/− sqrt(2/7) 0.534522 | −/− 3/4 0.75 | +/− sqrt(8)/3 0.942809 | +/+ sqrt(5)/2 1.118034 | (n-5)/sqrt(2n) |
| Inradius wrt. tritrunc. simpl. | 0 | +/+ 1/4 0.25 | −/+ sqrt(2)/3 0.471405 | −/− 3/sqrt(20) 0.670820 | (n-7)/sqrt(2n) |
| Inradius wrt. quadritr. simpl. | 0 | +/+ 1/sqrt(20) 0.223607 | (n-9)/sqrt(2n) | ||
| Volume | 0 | ? | 0 | ? | 0 / ? |
| Surface | 512 sqrt(7) 1354.624671 | 4096 | 12288 | 16384 sqrt(5) 36635.737743 | sqrt(n 8n-1) |
| Dihedral angles sim. - trunc.sim. | arccos(5/7) 44.415309° | arccos(3/4) 41.409622° | arccos(7/9) 38.942441° | arccos(4/5) 36.869898° | arccos[(n-2)/n] |
| Dihedral angles tr.sim. - bitr.sim. | arccos(5/7) 44.415309° | arccos(3/4) 41.409622° | arccos(7/9) 38.942441° | arccos(4/5) 36.869898° | arccos[(n-2)/n] |
| Dihedral angles bitr.sim. - tritr.sim. | arccos(5/7) 44.415309° | arccos(3/4) 41.409622° | arccos(7/9) 38.942441° | arccos(4/5) 36.869898° | arccos[(n-2)/n] |
| Dihedral angles tritr.s. - quadrit.s. | arccos(7/9) 38.942441° | arccos(4/5) 36.869898° | arccos[(n-2)/n] | ||
| Dihedral angles k-tr.s. -k-tr.s. | arccos(3/4) 41.409622° | arccos(4/5) 36.869898° | arccos[(n-2)/n] n 2(k+1) |
Within these polytopes brOn generally can be described as thebistratic lace towerof therectified orthoplex rOn-1 atop the birectified orthoplex brOn-1 atop the rectified orthoplex rOn-1.Thence, by means of thelace tower notation,brOn = o3o3x3o...o3o4o (n nodes) can be described as well asooo3xox3oxo3ooo...ooo3ooo4ooo&#xt (n-1 node positions).
On the other hand these polytopes brOn generally can also be described within a different orientation as a tristratic lace toweroooo3oxoo3ooxo3ooox3oooo...oooo3xooo3oxoo3ooxo3oooo&#xt (n-1 node positions),where the right hand decorations and the lefthand decorations for the smaller dimensions well might interlace, or in the extremal 3D case even overlay and run out of the other end:ouoo3oouo&#xt.
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | o3o4q | o3o3x4o | o3o3x3o4o | o3o3x3o3o4o | o3o3x3o...o3o4o |
| Acronym | q-cube | rit | nit | brag | birect. n-orthoplex |
| Vertex Count | 8u-trig | 32o3x q | 80tisdip | 160troct | 4n(n-1)(n-2)/3 |
| Facet Count birect. facets | 16tet | 32rap | 64dot | 2n | |
| Facet Count rect. facets | 6q-square | 8co | 10ico | 12rat | 2n |
| Circumradius | sqrt(3/2) 1.224745 | sqrt(3/2) 1.224745 | sqrt(3/2) 1.224745 | sqrt(3/2) 1.224745 | sqrt(3/2) 1.224745 |
| Inradius wrt. birect. facets | 3/sqrt(8) 1.060660 | 3/sqrt(10) 0.948683 | sqrt(3)/2 0.866025 | 3/sqrt(2n) | |
| Inradius wrt. rect. facets | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 |
| Volume | sqrt(8) 2.828427 | 23/6 3.833333 | 31 sqrt(2)/10 4.384062 | 4 | (3n-n 2n+n(n-1)/2) sqrt(2n)/n! |
| Surface | 12 | 44 sqrt(2)/3 20.741799 | [60+11 sqrt(5)]/3 28.198916 | (54 sqrt(2)+44 sqrt(3))/5 30.515554 | (3n-1 sqrt(n 2n+1)-n(sqrt(n)-1) sqrt(23n-1)+n(n-1)(sqrt(n)-2) sqrt(2n-1))/(n-1)! |
| Dihedral angles birect. - birect. | arccos(-3/5) 126.869898° | arccos(-2/3) 131.810315° | arccos(2/n - 1) | ||
| Dihedral angles birect. - rect. | 120° | arccos[-1/sqrt(5)] 116.565051° | arccos[-1/sqrt(6)] 114.094843° | arccos[-1/sqrt(n)] | |
| Dihedral angles rect. - rect. | 90° | 90° | 90° | 90° | 90° |
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | o3o3x3o3o3o4o | o3o3x3o3o3o3o4o | o3o3x3o3o3o3o3o4o | o3o3x3o3o3o3o3o3o4o | o3o3x3o...o3o4o |
| Acronym | barz | bark | brav | brake | birect. n-orthoplex |
| Vertex Count | 280trahex | 448tratac | 672trigee | 960trizee | 4n(n-1)(n-2)/3 |
| Facet Count rect. facets | 128bril | 256broc | 512brene | 1024breday | 2n |
| Facet Count verf facets | 14rag | 16rez | 18rek | 20riv | 2n |
| Circumradius | sqrt(3/2) 1.224745 | sqrt(3/2) 1.224745 | sqrt(3/2) 1.224745 | sqrt(3/2) 1.224745 | sqrt(3/2) 1.224745 |
| Inradius wrt. birect. facets | 3/sqrt(14) 0.801784 | 3/4 0.75 | 1/sqrt(2) 0.707107 | 3/sqrt(20) 0.670820 | 3/sqrt(2n) |
| Inradius wrt. rect. facets | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 |
| Volume | 656 sqrt(2)/315 2.945156 | 4541/2520 1.801984 | 1679 sqrt(2)/2520 0.942248 | 24427/56700 0.430811 | (3n-n 2n+n(n-1)/2) sqrt(2n)/n! |
| Surface | (406+302 sqrt(7))/45 26.778153 | (4764+968 sqrt(2))/315 19.469710 | 1679/140 11.992857 | (2515 sqrt(2)+14608 sqrt(5))/5670 6.388224 | (3n-1 sqrt(n 2n+1)-n(sqrt(n)-1) sqrt(23n-1)+n(n-1)(sqrt(n)-2) sqrt(2n-1))/(n-1)! |
| Dihedral angles birect. - birect. | arccos(-5/7) 135.584691° | arccos(-3/4) 138.590378° | arccos(-7/9) 141.057559° | arccos(-4/5) 143.130102° | arccos(2/n - 1) |
| Dihedral angles birect. - rect. | arccos[-1/sqrt(7)] 112.207654° | arccos[-1/sqrt(8)] 110.704811° | arccos(-1/3) 109.471221° | arccos[-1/sqrt(10)] 108.434949° | arccos[-1/sqrt(n)] |
| Dihedral angles rect. - rect. | 90° | 90° | 90° | 90° | 90° |
Within these polytopes brCn generally can be described as thebistratic lace towerof the birectified hypercube brCn-1 atop therectified hypercube rCn-1 atop the birectified hypercube brCn-1.Thence, by means of thelace tower notation,brCn = o3o...o3x3o4o (n nodes) can be described as well asooo3ooo...ooo3xox3oxo4ooo&#xt (n-1 node positions).
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | x3o4o | o3x3o4o | o3o3x3o4o | o3o3o3x3o4o | o3o...o3x3o4o |
| Acronym | oct | ico | nit | brox | birect. n-hypercube |
| Vertex Count | 6square | 24cube | 80tisdip | 240squatet | n(n-2) 2n-3 |
| Facet Count rect. simplex | 8trig | 16oct | 32rap | 64rix | 2n |
| Facet Count birect. h.cube | 8oct | 10ico | 12nit | 2n | |
| Circumradius | 1/sqrt(2) 0.707107 | 1 | sqrt(3/2) 1.224745 | sqrt(2) 1.414214 | sqrt[(n-2)/2] |
| Inradius wrt. rect. simplex | 1/sqrt(6) 0.408248 | 1/sqrt(2) 0.707107 | 3/sqrt(10) 0.948683 | 2/sqrt(3) 1.154701 | (n-2)/sqrt(2n) |
| Inradius wrt. birect. h.cube | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | |
| Volume | sqrt(2)/3 0.471405 | 2 | 31 sqrt(2)/10 4.384062 | 331/45 14.711111 | ? |
| Surface | 2 sqrt(3) 3.464102 | 8 sqrt(2) 11.313708 | [60+11 sqrt(5)]/3 28.198916 | 122 sqrt(2)/3 57.511352 | ? |
| Dihedral angles rect. - rect. | arccos(-1/3) 109.471221° | 120° | arccos(-3/5) 126.869898° | arccos(-2/3) 131.810315° | arccos(2/n-1) |
| Dihedral angles rect. - birect. | 120° | arccos[-1/sqrt(5)] 116.565051° | arccos[-1/sqrt(6)] 114.094843° | arccos[-1/sqrt(n)] | |
| Dihedral angles birect. - birect. | 90° | 90° | 90° | ||
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | o3o3o3o3x3o4o | o3o3o3o3o3x3o4o | o3o3o3o3o3o3x3o4o | o3o3o3o3o3o3o3x3o4o | o3o...o3x3o4o |
| Acronym | bersa | bro | barn | brade | birect. n-hypercube |
| Vertex Count | 672squapen | 1792squahix | 4608squahop | 11520squoc | n(n-2) 2n-3 |
| Facet Count rect. simplex | 128ril | 256roc | 512rene | 1024reday | 2n |
| Facet Count birect. h.cube | 14brox | 16bersa | 18bro | 20barn | 2n |
| Circumradius | sqrt(5/2) 1.581139 | sqrt(3) 1.732051 | sqrt(7/2) 1.870829 | 2 | sqrt[(n-2)/2] |
| Inradius wrt. rect. simplex | 5/sqrt(14) 1.336306 | 3/2 1.5 | 7/sqrt(18) 1.649916 | 4/sqrt(5) 1.788854 | (n-2)/sqrt(2n) |
| Inradius wrt. birect. h.cube | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 |
| Volume | 4919 sqrt(2)/630 11.042090 | ? | ? | ? | ? |
| Surface | ? | ? | ? | ? | ? |
| Dihedral angles rect. - rect. | arccos(-5/7) 135.584691° | arccos(-3/4) 138.590378° | arccos(-7/9) 141.057559° | arccos(-4/5) 143.130102° | arccos(2/n - 1) |
| Dihedral angles rect. - birect. | arccos[-1/sqrt(7)] 112.207654° | arccos[-1/sqrt(8)] 110.704811° | arccos(-1/3) 109.471221° | arccos[-1/sqrt(10)] 108.434949° | arccos[-1/sqrt(n)] |
| Dihedral angles birect. - birect. | 90° | 90° | 90° | 90° | 90° |
Within these polytopes tOn generally can be described as the tetrastratic lace tower of theregular orthoplex On-1 atop the u-scaled regular orthoplex On-1 atop the truncated orthoplex tOn-1 atop the u-scaled regular orthoplex On-1 atop the regular orthoplex On-1.Thence, by means of thelace tower notation,tOn = x3x3o...o3o4o (n nodes) can be described as well asxuxux3ooxoo3ooooo...ooooo3ooooo4ooooo&#xt (n-1 node positions).
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | x3x4o | x3x3o4o | x3x3o3o4o | x3x3o3o3o4o | x3x3o...o3o4o |
| Acronym | toe | thex | tot | tag | trunc. n-orthoplex |
| Vertex Count | 24 | 48 | 80 | 120 | 4n(n-1) |
| Facet Count trunc. facets | 8hig | 16tut | 32tip | 64tix | 2n |
| Facet Count verf facets | 6square | 8oct | 10hex | 12tac | 2n |
| Circumradius | sqrt(5/2) 1.581139 | sqrt(5/2) 1.581139 | sqrt(5/2) 1.581139 | sqrt(5/2) 1.581139 | sqrt(5/2) 1.581139 |
| Inradius wrt. trunc. facets | sqrt(3/2) 1.224745 | 3/sqrt(8) 1.060660 | 3/sqrt(10) 0.948683 | sqrt(3)/2 0.866025 | 3/sqrt(2n) |
| Inradius wrt. verf facets | sqrt(2) 1.414214 | sqrt(2) 1.414214 | sqrt(2) 1.414214 | sqrt(2) 1.414214 | sqrt(2) 1.414214 |
| Volume | 8 sqrt(2) 11.313708 | 77/6 12.833333 | 119 sqrt(2)/15 11.219428 | 241/30 8.033333 | (3n-n) sqrt(2n)/n! |
| Surface | 6+12 sqrt(3) 26.784610 | 100 sqrt(2)/3 47.140452 | (5+76 sqrt(5))/3 58.313722 | (2 sqrt(2)+158 sqrt(3))/5 55.298491 | 2[n+(3n-1-n) sqrt(n)] sqrt(2n-1)/(n-1)! |
| Dihedral angles trunc. - orthopl. | arccos[-1/sqrt(3)] 125.264390° | 120° | arccos[-1/sqrt(5)] 116.565051° | arccos[-1/sqrt(6)] 114.094843° | arccos[-1/sqrt(n)] |
| Dihedral angles trunc. - trunc. | arccos(-1/3) 109.471221° | 120° | arccos(-3/5) 126.869898° | arccos(-2/3) 131.810315° | arccos(2/n - 1) |
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | x3x3o3o3o3o4o | x3x3o3o3o3o3o4o | x3x3o3o3o3o3o3o4o | x3x3o3o3o3o3o3o3o4o | x3x3o...o3o4o |
| Acronym | taz | tek | tiv | take | trunc. n-orthoplex |
| Vertex Count | 168 | 224 | 288 | 360 | 4n(n-1) |
| Facet Count trunc. facets | 128til | 256toc | 512tene | 1024teday | 2n |
| Facet Count verf facets | 14gee | 16zee | 18ek | 20vee | 2n |
| Circumradius | sqrt(5/2) 1.581139 | sqrt(5/2) 1.581139 | sqrt(5/2) 1.581139 | sqrt(5/2) 1.581139 | sqrt(5/2) 1.581139 |
| Inradius wrt. trunc. facets | 3/sqrt(14) 0.801784 | 3/4 0.75 | 1/sqrt(2) 0.707107 | 3/sqrt(20) 0.670820 | 3/sqrt(2n) |
| Inradius wrt. verf facets | sqrt(2) 1.414214 | sqrt(2) 1.414214 | sqrt(2) 1.414214 | sqrt(2) 1.414214 | sqrt(2) 1.414214 |
| Volume | 218 sqrt(2)/63 4.893628 | 6553/2520 2.600397 | 1093 sqrt(2)/1260 1.226774 | 59039/113400 0.520626 | (3n-n) sqrt(2n)/n! |
| Surface | (7+722 sqrt(7))/45 42.605165 | (8716+8 sqrt(2))/315 27.705758 | 437/28 15.607143 | [5 sqrt(2)+19673 sqrt(5)]/5670 7.759654 | 2[n+(3n-1-n) sqrt(n)] sqrt(2n-1)/(n-1)! |
| Dihedral angles trunc. - orthopl. | arccos[-1/sqrt(7)] 112.207654° | arccos[-1/sqrt(8)] 110.704811° | arccos(-1/3) 109.471221° | arccos[-1/sqrt(10)] 108.434949° | arccos[-1/sqrt(n)] |
| Dihedral angles trunc. - trunc. | arccos(-5/7) 135.584691° | arccos(-3/4) 138.590378° | arccos(-7/9) 141.057559° | arccos(-4/5) 143.130102° | arccos(2/n - 1) |
Within these polytopes tCn generally can be described as the tristratic lace towerof the truncated hypercube tCn-1 atop the w-scaledregular hypercube Cn-1 atop a further w-scaled regular hypercube Cn-1 atop the truncated hypercube tCn-1.Thence, by means of thelace tower notation,tCn = o3o...o3x4x (n nodes) can be described as well asoooo3oooo...oooo3xoox4xwwx&#xt (n-1 node positions).
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | o3x4x | o3o3x4x | o3o3o3x4x | o3o3o3o3x4x | o3o...o3x4x |
| Acronym | tic | tat | tan | tox | trunc. n-hypercube |
| Vertex Count | 24 | 64 | 160 | 384 | n 2n |
| Facet Count trunc. facets | 6oc | 8tic | 10tat | 12tan | 2n |
| Facet Count verf facets | 8trig | 16tet | 32pen | 64hix | 2n |
| Circumradius | sqrt[7+4 sqrt(2)]/2 1.778824 | sqrt[(5+3 sqrt(2))/2] 2.149726 | sqrt[13+8 sqrt(2)]/2 2.465447 | sqrt[(8+5 sqrt(2))/2] 2.745093 | sqrt[(3n-2)+(2n-2) sqrt(2)]/2 |
| Inradius wrt. trunc. facets | [1+sqrt(2)]/2 1.207107 | [1+sqrt(2)]/2 1.207107 | [1+sqrt(2)]/2 1.207107 | [1+sqrt(2)]/2 1.207107 | [1+sqrt(2)]/2 1.207107 |
| Inradius wrt. verf facets | (3+2 sqrt(2))/sqrt(12) 1.682522 | (3+2 sqrt(2))/sqrt(8) 2.060660 | (5+4 sqrt(2))/sqrt(20) 2.382945 | (5+3 sqrt(2))/sqrt(12) 2.668121 | [n+(n-1) sqrt(2)]/sqrt(4n) |
| Volume | (21+14 sqrt(2))/3 13.599663 | (101+72 sqrt(2))/6 33.803896 | (1230+869 sqrt(2))/30 81.965053 | (8909+6300 sqrt(2))/90 197.983838 | ? |
| Surface | 12+12 sqrt(2)+2 sqrt(3) 32.434664 | (168+116 sqrt(2))/3 110.682924 | (505+360 sqrt(2)+sqrt(5))/3 338.784317 | (7380+5214 sqrt(2)+2 sqrt(3))/15 983.811574 | ? |
| Dihedral angles trunc. - simplex | arccos[-1/sqrt(3)] 125.264390° | 120° | arccos[-1/sqrt(5)] 116.565051° | arccos[-1/sqrt(6)] 114.094843° | arccos[-1/sqrt(n)] |
| Dihedral angles trunc. - trunc. | 90° | 90° | 90° | 90° | 90° |
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | o3o3o3o3o3x4x | o3o3o3o3o3o3x4x | o3o3o3o3o3o3o3x4x | o3o3o3o3o3o3o3o3x4x | o3o...o3x4x |
| Acronym | tasa | tocto | ten | tade | trunc. n-hypercube |
| Vertex Count | 896 | 2048 | 4608 | 10240 | n 2n |
| Facet Count trunc. facets | 14tox | 16tasa | 18tocto | 20ten | 2n |
| Facet Count verf facets | 128hop | 256oca | 512ene | 1024day | 2n |
| Circumradius | sqrt[19+12 sqrt(2)]/2 2.998773 | sqrt[(11+7 sqrt(2))/2] 3.232607 | sqrt[25+16 sqrt(2)]/2 3.450631 | sqrt[(14+9 sqrt(2))/2] 3.655675 | sqrt[(3n-2)+(2n-2) sqrt(2)]/2 |
| Inradius wrt. trunc. facets | [1+sqrt(2)]/2 1.207107 | [1+sqrt(2)]/2 1.207107 | [1+sqrt(2)]/2 1.207107 | [1+sqrt(2)]/2 1.207107 | [1+sqrt(2)]/2 1.207107 |
| Inradius wrt. verf facets | (7+6 sqrt(2))/sqrt(28) 2.926443 | (7+4 sqrt(2))/4 3.164214 | (9+8 sqrt(2))/6 3.385618 | (9+5 sqrt(2))/sqrt(20) 3.593600 | [n+(n-1) sqrt(2)]/sqrt(4n) |
| Volume | ? | ? | ? | ? | ? |
| Surface | ? | ? | ? | ? | ? |
| Dihedral angles trunc. - simplex | arccos[-1/sqrt(7)] 112.207654° | arccos[-1/sqrt(8)] 110.704811° | arccos(-1/3) 109.471221° | arccos[-1/sqrt(10)] 108.434949° | arccos[-1/sqrt(n)] |
| Dihedral angles trunc. - trunc. | 90° | 90° | 90° | 90° | 90° |
These non-convex polytopes qtCn generally are nothing but the conjugates of thetruncated hypercube tCn.
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | o3x4/3x | o3o3x4/3x | o3o3o3x4/3x | o3o3o3o3x4/3x | o3o...o3x4/3x |
| Acronym | quith | quitit | quittin | quotox | quasitrunc. n-hypercube |
| Vertex Count | 24 | 64 | 160 | 384 | n 2n |
| Facet Count quasitr. fac. | 6og | 8quith | 10quitit | 12quittin | 2n |
| Facet Count verf facets | 8trig | 16tet | 32pen | 64hix | 2n |
| Circumradius | sqrt[7-4 sqrt(2)]/2 0.579471 | sqrt[(5-3 sqrt(2))/2] 0.615370 | sqrt[13-8 sqrt(2)]/2 0.649286 | sqrt[(8-5 sqrt(2))/2] 0.681517 | sqrt[(3n-2)-(2n-2) sqrt(2)]/2 |
| Inradius wrt. quasitr. fac. | [sqrt(2)-1]/2 0.207107 | [sqrt(2)-1]/2 0.207107 | [sqrt(2)-1]/2 0.207107 | [sqrt(2)-1]/2 0.207107 | [sqrt(2)-1]/2 0.207107 |
| Inradius wrt. verf facets | (3-2 sqrt(2))/sqrt(12) +0.049529 | (4-3 sqrt(2))/4 -0.060660 | (5-4 sqrt(2))/sqrt(20) -0.146877 | (3 sqrt(2)-5)/sqrt(12) -0.218631 | [(n-1) sqrt(2)-n]/sqrt(4n) |
| Volume | (21-14 sqrt(2))/3 0.400337 | (72 sqrt(2)-101)/6 0.137229 | (1230-869 sqrt(2))/30 0.034947 | (6300 sqrt(2)-8909)/90 0.0060605 | ? |
| Surface | -12+12 sqrt(2)+2 sqrt(3) 8.434664 | 56-36 sqrt(2) 5.088312 | ? | ? | ? |
| Dihedral angles quasitr. - simpl. | arccos[1/sqrt(3)] 54.735610° | 60° | arccos[1/sqrt(5)] 63.434949° | arccos[1/sqrt(6)] 65.905157° | arccos[1/sqrt(n)] |
| Dihedral angles quasitr. - quasitr. | 90° | 90° | 90° | 90° | 90° |
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | o3o3o3o3o3x4/3x | o3o3o3o3o3o3x4/3x | o3o3o3o3o3o3o3x4/3x | o3o3o3o3o3o3o3o3x4/3x | o3o...o3x4/3x |
| Acronym | quitasa | queto | quiten | quitade | quasitrunc. n-hypercube |
| Vertex Count | 896 | 2048 | 4608 | 10240 | n 2n |
| Facet Count quasitr. fac. | 14quotox | 16quitasa | 18queto | 20quiten | 2n |
| Facet Count verf facets | 128hop | 256oca | 512ene | 1024day | 2n |
| Circumradius | sqrt[19-12 sqrt(2)]/2 0.712292 | sqrt[(11-7 sqrt(2))/2] 0.741790 | sqrt[25-16 sqrt(2)]/2 0.770160 | sqrt[(14-9 sqrt(2))/2] 0.797521 | sqrt[(3n-2)-(2n-2) sqrt(2)]/2 |
| Inradius wrt. quasitr. fac. | [sqrt(2)-1]/2 0.207107 | [sqrt(2)-1]/2 0.207107 | [sqrt(2)-1]/2 0.207107 | [sqrt(2)-1]/2 0.207107 | [sqrt(2)-1]/2 0.207107 |
| Inradius wrt. verf facets | (7-6 sqrt(2))/sqrt(28) -0.280692 | (4 sqrt(2)-7)/4 -0.335786 | (9-8 sqrt(2))/6 -0.385618 | (5 sqrt(2)-9)/sqrt(20) -0.431322 | [n-(n-1) sqrt(2)]/sqrt(4n) |
| Volume | ? | ? | ? | ? | ? |
| Surface | ? | ? | ? | ? | ? |
| Dihedral angles quasitr. - simpl. | arccos[1/sqrt(7)] 67.792346° | arccos[1/sqrt(8)] 69.295189° | arccos(1/3) 70.528779° | arccos[1/sqrt(10)] 71.565051° | arccos[1/sqrt(n)] |
| Dihedral angles quasitr. - quasitr. | 90° | 90° | 90° | 90° | 90° |
Within these polytopes btCn generally can be described as a stack of the bitruncated hypercube btCn-1 atop u-scaledrectified hypercube rCn-1 atop an(x,q)-varianttruncated hypercube tCn-1 atop u-scaled rectified hypercube rCn-1 (again) atop the opposite bitruncated hypercube btCn-1.Thence, by means of thelace tower notation,btCn = o3o...o3x3x4o (n nodes) can be described as well asooooo3ooooo...ooooo3xooox3xuxux4ooqoo&#xt (n-1 node positions).This representation then shows up those right angles generally.
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | x3x4o | o3x3x4o | o3o3x3x4o | o3o3o3x3x4o | o3o...o3x3x4o |
| Acronym | toe | tah | bittin | botox | bitrunc. n-hypercube |
| Vertex Count | 24 | 96 | 320 | 960 | n(n-1) 2n-1 |
| Facet Count bitrunc. fac. | 6square | 8toe | 10tah | 12bittin | 2n |
| Facet Count trunc. simpl. | 8hig | 16tut | 32tip | 64tix | 2n |
| Circumradius | sqrt(5/2) 1.581139 | sqrt(9/2) 2.121320 | sqrt(13/2) 2.549510 | sqrt(17/2) 2.915476 | sqrt[(4n-7)/2] |
| Inradius wrt. bitrunc. fac. | sqrt(2) 1.414214 | sqrt(2) 1.414214 | sqrt(2) 1.414214 | sqrt(2) 1.414214 | sqrt(2) 1.414214 |
| Inradius wrt. trunc. simpl. | sqrt(3/2) 1.224745 | 5/sqrt(8) 1.767767 | 7/sqrt(10) 2.213594 | sqrt(27)/2 2.598076 | (2n-3)/sqrt(2n) |
| Volume | 8 sqrt(2) 11.313708 | 307/6 51.166667 | 1801 sqrt(2)/15 169.799908 | ? | ? |
| Surface | 6+12 sqrt(3) 26.784610 | ? | ? | ? | ? |
| Dihedral angles trunc. - trunc. | arccos(-1/3) 109.471221° | 120° | arccos(-3/5) 126.869898° | arccos(-2/3) 131.810315° | arccos[-(n-2)/n] |
| Dihedral angles trunc. - bitrunc | arccos[-1/sqrt(3)] 125.264390° | 120° | arccos[-1/sqrt(5)] 116.565051° | arccos[-1/sqrt(6)] 114.094843° | arccos[-1/sqrt(n)] |
| Dihedral angles bitrunc. - bitrunc. | 90° | 90° | 90° | 90° | |
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | o3o3o3o3x3x4o | o3o3o3o3o3x3x4o | o3o3o3o3o3o3x3x4o | o3o3o3o3o3o3o3x3x4o | o3o...o3x3x4o |
| Acronym | betsa | bato | ? | ? | bitrunc. n-hypercube |
| Vertex Count | 2688 | 7168 | 18432 | 46080 | n(n-1) 2n-1 |
| Facet Count bitrunc. fac. | 14botox | 16betsa | 18bato | 20? | 2n |
| Facet Count trunc. simpl. | 128til | 256toc | 512tene | 1024teday | 2n |
| Circumradius | sqrt(21/2) 3.240370 | 5/sqrt(2) 3.535534 | sqrt(29/2) 3.807887 | sqrt(33/2) 4.062019 | sqrt[(4n-7)/2] |
| Inradius wrt. bitrunc. fac. | sqrt(2) 1.414214 | sqrt(2) 1.414214 | sqrt(2) 1.414214 | sqrt(2) 1.414214 | sqrt(2) 1.414214 |
| Inradius wrt. trunc. simpl. | 11/sqrt(14) 2.939874 | 13/4 3.25 | 5/sqrt(2) 3.535534 | 17/sqrt(20) 3.801316 | (2n-3)/sqrt(2n) |
| Volume | ? | ? | ? | ? | ? |
| Surface | ? | ? | ? | ? | ? |
| Dihedral angles trunc. - trunc. | arccos(-5/7) 135.584691° | arccos(-3/4) 138.590378° | arccos(-7/9) 141.057559° | arccos(-4/5) 143.130102° | arccos[-(n-2)/n] |
| Dihedral angles trunc. - bitrunc. | arccos[-1/sqrt(7)] 112.207654° | arccos[-1/sqrt(8)] 110.704811° | arccos(-1/3) 109.471221° | arccos[-1/sqrt(10)] 108.434949° | arccos[-1/sqrt(n)] |
| Dihedral angles bitrunc. - bitrunc. | 90° | 90° | 90° | 90° | 90° |
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | x3o4x | o3x3o4x | o3o3x3o4x | o3o3o3x3o4x | o3o...o3x3o4x |
| Acronym | sirco | srit | sirn | srox | rhomb. n-hypercube |
| Vertex Count | 24 | 96 | 320 | 960 | n(n-1) 2n-1 |
| Facet Count rect. simpl. | 8trig | 16oct | 32rap | 64rix | 2n |
| Facet Count prism | 12square | 32trip | 80tepe | 192penp | n 2n-1 |
| Facet Count rhomb. hyp.cube | 6square | 8sirco | 10srit | 12sirn | 2n |
| Circumradius | sqrt[5+2 sqrt(2)]/2 1.398966 | sqrt[2+sqrt(2)] 1.847759 | [3+sqrt(2)]/2 2.207107 | sqrt[(7+4 sqrt(2))/2] 2.515637 | sqrt[3n-4+2(n-2) sqrt(2)]/2 |
| Inradius wrt. rect. simp. facets | [3+sqrt(2)]/sqrt(12) 1.274274 | 1+1/sqrt(2) 1.707107 | sqrt[(43+30 sqrt(2))/20] 2.066717 | sqrt[(17+12 sqrt(2))/6] 2.379445 | sqrt[(3n2-8n+8+2n(n-2) sqrt(2))/4n] |
| Inradius wrt. prism facets | (1+sqrt(2))/2 1.207107 | sqrt[(17+12 sqrt(2))/12] 1.682522 | sqrt[(17+12 sqrt(2))/8] 2.060660 | sqrt[(57+40 sqrt(2))/20] 2.382945 | sqrt[(3n2-10n+9+2(n-1)(n-2) sqrt(2))/(4(n-1))] |
| Inradius wrt. rh. hyp.cub. facets | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 |
| Volume | [12+10 sqrt(2)]/3 8.714045 | [45+32 sqrt(2)]/3 30.084945 | [1205+843 sqrt(2)]/30 79.906068 | [4426+3141 sqrt(2)]/45 197.067662 | ? |
| Surface | 18+2 sqrt(3) 21.464102 | 8[4+4 sqrt(2)+sqrt(3)] 91.111240 | [450+340 sqrt(2)+11 sqrt(5)]/3 318.476453 | ? | ? |
| Dihedral angles rect. - prism | arccos[-sqrt(2/3)] 144.735610° | 150° | arccos[-2/sqrt(5)] 153.434949° | arccos[-sqrt(5/6)] 155.905157° | arccos[-sqrt((n-1)/n)] |
| Dihedral angles rect. - rhomb. | 120° | arccos[-1/sqrt(5)] 116.565051° | arccos[-1/sqrt(6)] 114.094843° | arccos[-1/sqrt(n)] | |
| Dihedral angles prism - rhomb. | 135° | arccos[-1/sqrt(3)] 125.264390° | 120° | arccos[-1/sqrt(5)] 116.565051° | arccos[-1/sqrt(n-1)] |
| Dihedral angles rhomb. - rhomb. | 90° | 90° | 90° | 90° | |
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | o3o3o3o3x3o4x | o3o3o3o3o3x3o4x | o3o3o3o3o3o3x3o4x | o3o3o3o3o3o3o3x3o4x | o3o...o3x3o4x |
| Acronym | sersa | soro | ? | ? | rhomb. n-hypercube |
| Vertex Count | 2688 | 7168 | 18432 | 46080 | n(n-1) 2n-1 |
| Facet Count rect. simpl. | 128ril | 256roc | 512rene | 1024reday | 2n |
| Facet Count prism | 448hixip | 1024hopip | 2304ocpe | 5120enep | n 2n-1 |
| Facet Count rhomb. hyp.cube | 14srox | 16sersa | 18soro | 20? | 2n |
| Circumradius | sqrt[17+10 sqrt(2)]/2 2.790257 | sqrt[5+3 sqrt(2)] 3.040171 | sqrt[23+14 sqrt(2)]/2 3.271047 | sqrt[(13+8 sqrt(2))/2] 3.486668 | sqrt[3n-4+2(n-2) sqrt(2)]/2 |
| Inradius wrt. rect. simp. facets | sqrt[(99+70 sqrt(2))/28] 2.659182 | sqrt[17+12 sqrt(2)]/2 2.914214 | sqrt[179+126 sqrt(2)]/6 3.149916 | sqrt[(57+40 sqrt(2))/10] 3.369993 | sqrt[(3n2-8n+8+2n(n-2) sqrt(2))/4n] |
| Inradius wrt. prism facets | sqrt[(43+30 sqrt(2))/12] 2.668121 | sqrt[(121+84 sqrt(2))/28] 2.926443 | sqrt[81+56 sqrt(2)]/4 3.164214 | sqrt[209+144 sqrt(2)]/6 3.385618 | sqrt[(3n2-10n+9+2(n-1)(n-2) sqrt(2))/(4(n-1))] |
| Inradius wrt. rh. hyp.cub. facets | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 |
| Volume | ? | ? | ? | ? | ? |
| Surface | ? | ? | ? | ? | ? |
| Dihedral angles rect. - prism | arccos[-sqrt(6/7)] 157.792346° | arccos[-sqrt(7/8)] 159.295189° | arccos[-sqrt(8/9)] 160.528779° | arccos[-sqrt(9/10)] 161.565051° | arccos[-sqrt((n-1)/n)] |
| Dihedral angles rect. - rhomb. | arccos[-1/sqrt(7)] 112.207654° | arccos[-1/sqrt(8)] 110.704811° | arccos[-1/3] 109.471221° | arccos[-1/sqrt(10)] 108.434949° | arccos[-1/sqrt(n)] |
| Dihedral angles prism - rhomb. | arccos[-1/sqrt(6)] 114.094843° | arccos[-1/sqrt(7)] 112.207654° | arccos[-1/sqrt(8)] 110.704811° | arccos[-1/3] 109.471221° | arccos[-1/sqrt(n-1)] |
| Dihedral angles rhomb. - rhomb. | 90° | 90° | 90° | 90° | 90° |
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | x3o4/3x | o3x3o4/3x | o3o3x3o4/3x | o3o3o3x3o4/3x | o3o...o3x3o4/3x |
| Acronym | querco | qrit | quarn | qrax | quasirhomb. n-hypercube |
| Vertex Count | 24 | 96 | 320 | 960 | n(n-1) 2n-1 |
| Facet Count rect. simpl. | 8trig | 16oct | 32rap | 64rix | 2n |
| Facet Count prism | 12square | 32trip | 80tepe | 192penp | n 2n-1 |
| Facet Count qu.rh. hyp.cube | 6square | 8querco | 10qrit | 12quarn | 2n |
| Circumradius | sqrt[5-2 sqrt(2)]/2 0.736813 | sqrt[2-sqrt(2)] 0.765367 | [3-sqrt(2)]/2 0.792893 | sqrt[(7-4 sqrt(2))/2] 0.819496 | sqrt[3n-4-2(n-2) sqrt(2)]/2 |
| Inradius wrt. rect. simp. facets | [3-sqrt(2)]/sqrt(12) 0.457777 | 1-1/sqrt(2) 0.292893 | sqrt[(43-30 sqrt(2))/20] 0.169351 | sqrt[(17-12 sqrt(2))/6] 0.0700443 | sqrt[(3n2-8n+8-2n(n-2) sqrt(2))/4n] |
| Inradius wrt. prism facets | (sqrt(2)-1)/2 0.207107 | sqrt[(17-12 sqrt(2))/12] 0.0495288 | sqrt[(17-12 sqrt(2))/8] 0.0606602 | sqrt[(57-40 sqrt(2))/20] 0.146877 | sqrt[(3n2-10n+9-2(n-1)(n-2) sqrt(2))/(4(n-1))] |
| Inradius wrt. qrh. hyp.cub. facets | (sqrt(2)-1)/2 0.207107 | (sqrt(2)-1)/2 0.207107 | (sqrt(2)-1)/2 0.207107 | (sqrt(2)-1)/2 0.207107 | (sqrt(2)-1)/2 0.207107 |
| Volume | [10 sqrt(2)-12]/3 0.714045 | [32 sqrt(2)-45]/3 0.0849447 | [1205-843 sqrt(2)]/30 0.427266 | [3141 sqrt(2)-4426]/45 0.356551 | ? |
| Surface | 18+2 sqrt(3) 21.464102 | ? | ? | ? | ? |
| Dihedral angles rect. - prism | arccos[sqrt(2/3)] 35.264390° | 30° | arccos[2/sqrt(5)] 26.565051° | arccos[sqrt(5/6)] 24.094843° | arccos[sqrt((n-1)/n)] |
| Dihedral angles rect. - qu.rh. | 60° | arccos[1/sqrt(5)] 63.434949° | arccos[1/sqrt(6)] 65.905157° | arccos[1/sqrt(n)] | |
| Dihedral angles prism - qu.rh. | 45° | arccos[1/sqrt(3)] 54.735610° | 60° | arccos[1/sqrt(5)] 63.434949° | arccos[1/sqrt(n-1)] |
| Dihedral angles qu.rh. - qu.rh. | 90° | 90° | 90° | 90° | |
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | o3o3o3o3x3o4/3x | o3o3o3o3o3x3o4/3x | o3o3o3o3o3o3x3o4/3x | o3o3o3o3o3o3o3x3o4/3x | o3o...o3x3o4/3x |
| Acronym | quersa | qro | ? | ? | quasirhomb. n-hypercube |
| Vertex Count | 2688 | 7168 | 18432 | 46080 | n(n-1) 2n-1 |
| Facet Count rect. simpl. | 128ril | 256roc | 512rene | 1024reday | 2n |
| Facet Count prism | 448hixip | 1024hopip | 2304ocpe | 5120enep | n 2n-1 |
| Facet Count qu.rh. hyp.cube | 14qrax | 16quersa | 18qro | 20? | 2n |
| Circumradius | sqrt[17-10 sqrt(2)]/2 0.845261 | sqrt[5-3 sqrt(2)] 0.870264 | sqrt[23-14 sqrt(2)]/2 0.894568 | sqrt[(13-8 sqrt(2))/2] 0.918230 | sqrt[3n-4-2(n-2) sqrt(2)]/2 |
| Inradius wrt. rect. simp. facets | sqrt[(99-70 sqrt(2))/28] 0.0134306 | sqrt[17-12 sqrt(2)]/2 0.0857864 | sqrt[179-126 sqrt(2)]/6 0.149916 | sqrt[(57-40 sqrt(2))/10] 0.207716 | sqrt[(3n2-8n+8-2n(n-2) sqrt(2))/4n] |
| Inradius wrt. prism facets | sqrt[(43-30 sqrt(2))/12] 0.218631 | sqrt[(121-84 sqrt(2))/28] 0.280692 | sqrt[81-56 sqrt(2)]/4 0.335786 | sqrt[209-144 sqrt(2)]/6 0.385618 | sqrt[(3n2-10n+9-2(n-1)(n-2) sqrt(2))/(4(n-1))] |
| Inradius wrt. qrh. hyp.cub. facets | (sqrt(2)-1)/2 0.207107 | (sqrt(2)-1)/2 0.207107 | (sqrt(2)-1)/2 0.207107 | (sqrt(2)-1)/2 0.207107 | (sqrt(2)-1)/2 0.207107 |
| Volume | ? | ? | ? | ? | ? |
| Surface | ? | ? | ? | ? | ? |
| Dihedral angles rect. - prism | arccos[sqrt(6/7)] 22.207654° | arccos[sqrt(7/8)] 20.704811° | arccos[sqrt(8/9)] 19.471221° | arccos[sqrt(9/10)] 18.434949° | arccos[sqrt((n-1)/n)] |
| Dihedral angles rect. - qu.rh. | arccos[1/sqrt(7)] 67.792346° | arccos[1/sqrt(8)] 69.295189° | arccos[1/3] 70.528779° | arccos[1/sqrt(10)] 84.260830° | arccos[1/sqrt(n)] |
| Dihedral angles prism - qu.rh. | arccos[1/sqrt(6)] 65.905157° | arccos[1/sqrt(7)] 67.792346° | arccos[1/sqrt(8)] 69.295189° | arccos[1/3] 70.528779° | arccos[1/sqrt(n-1)] |
| Dihedral angles qu.rh. - qu.rh. | 90° | 90° | 90° | 90° | 90° |
Within these polytopes eCn generally can be described as the tristratic lace tower oftheregular hypercube Cn-1 atop the maximal expanded hypercube eCn-1 atop a further maximal expanded hypercube eCn-1 atop the regular hypercube Cn-1.Thence, by means of thelace tower notation,eCn = x3o...o3o4x (n nodes) can be described as well asoxxo3oooo...oooo3oooo4xxxx&#xt (n-1 node positions).
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | x3o4x | x3o3o4x | x3o3o3o4x | x3o3o3o3o4x | x3o...o3o4x |
| Acronym | sirco | sidpith | scant | stoxog | max-exp. n-hypercube |
| Vertex Count | 24 | 64 | 160 | 384 | n 2n |
| Facet Count simplex | 8trig | 16tet | 32pen | 64hix | 2n n! 2n-0/[(n-0)!0!] |
| Facet Count prism I | 12square | 32trip | 80tepe | 192penp | n 2n-1 n! 2n-1/[(n-1)!1!] |
| Facet Count duoprism I | 80tisdip | 240squatet | n(n-1) 2n-3 n! 2n-2/[(n-2)!2!] | ||
| Facet Count duoprism II | 160tracube | n(n-1)(n-2) 2n-4/3 n! 2n-3/[(n-3)!3!] | |||
| Facet Count prism II | 24cube | 40tes | 60pent | 2n(n-1) n! 22/[2!(n-2)!] | |
| Facet Count hypercube | 6square | 8cube | 10tes | 12pent | 2n n! 21/[1!(n-1)!] |
| Circumradius | sqrt[5+2 sqrt(2)]/2 1.398966 | sqrt[(3+sqrt(2))/2] 1.485633 | sqrt[7+2 sqrt(2)]/2 1.567516 | sqrt[2+1/sqrt(2)] 1.645329 | sqrt[(n+2)+sqrt(8)]/2 |
| Inradius wrt. simplex facets | [3+sqrt(2)]/sqrt(12) 1.274274 | [1+2 sqrt(2)]/sqrt(8) 1.353553 | [5+sqrt(2)]/sqrt(20) 1.434262 | [1+3 sqrt(2)]/sqrt(12) 1.513420 | [n+sqrt(2)]/sqrt(4n) |
| Inradius wrt. prism I facets | (1+sqrt(2))/2 1.207107 | [3+sqrt(2)]/sqrt(12) 1.274274 | [1+2 sqrt(2)]/sqrt(8) 1.353553 | [5+sqrt(2)]/sqrt(20) 1.434262 | [(n-1)+sqrt(2)]/sqrt[4(n-1)] |
| Inradius wrt. d.pr. I fac. | [3+sqrt(2)]/sqrt(12) 1.274274 | [1+2 sqrt(2)]/sqrt(8) 1.353553 | [(n-2)+sqrt(2)]/sqrt[4(n-2)] | ||
| Inradius wrt. d.pr. II fac. | [3+sqrt(2)]/sqrt(12) 1.274274 | [(n-3)+sqrt(2)]/sqrt[4(n-3)] | |||
| Inradius wrt. prism II facets | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | |
| Inradius wrt. hyp.cube fac. | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 |
| Volume | [12+10 sqrt(2)]/3 8.714045 | [43+32 sqrt(2)]/6 14.709139 | [355+251 sqrt(2)]/30 23.665587 | [833+579 sqrt(2)]/45 36.707326 | ? |
| Surface | 18+2 sqrt(3) 21.464102 | [96+4 sqrt(2)+24 sqrt(3)]/3 47.742025 | [150+20 sqrt(2)+60 sqrt(3)+sqrt(5)]/3 94.814463 | [1080+300 sqrt(2)+601 sqrt(3)+30 sqrt(5)]/15 174.153910 | ? |
| Dihedral angles simplex - (next) | arccos[-sqrt(2/3)] 144.735610° | 150° | arccos[-2/sqrt(5)] 153.434949° | arccos[-sqrt(5/6)] 155.905157° | arccos[-sqrt((n-1)/n)] |
| Dihedral angles prism I - (next) | 135° | arccos[-sqrt(2/3)] 144.735610° | 150° | arccos[-2/sqrt(5)] 153.434949° | arccos[-sqrt((n-2)/(n-1))] |
| Dihedral angles d.pr. I - (next) | arccos[-sqrt(2/3)] 144.735610° | 150° | arccos[-sqrt((n-3)/(n-2))] | ||
| Dihedral angles d.pr. II - (next) | arccos[-sqrt(2/3)] 144.735610° | arccos[-sqrt((n-4)/(n-3))] | |||
| Dihedral angles prism II - hyp.cube | 135° | 135° | 135° | 135° | |
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | x3o3o3o3o3o4x | x3o3o3o3o3o3o4x | x3o3o3o3o3o3o3o4x | x3o3o3o3o3o3o3o3o4x | x3o...o3o4x |
| Acronym | suposaz | saxoke | ? | ? | max-exp. n-hypercube |
| Vertex Count | 896 | 2048 | 4608 | 10240 | n 2n |
| Facet Count simplex | 128hop | 256oca | 512ene | 1024day | 2n n! 2n-0/[(n-0)!0!] |
| Facet Count prism I | 448hixip | 1024hopip | 2304ocpe | 5120enep | n 2n-1 n! 2n-1/[(n-1)!1!] |
| Facet Count duoprism I | 672squapen | 1792squahix | 4608squahop | 11520squoc | n(n-1) 2n-3 n! 2n-2/[(n-2)!2!] |
| Facet Count duoprism II | 560tetcube | 1792cubpen | 5376cubhix | 15360cubhop | n(n-1)(n-2) 2n-4/3 n! 2n-3/[(n-3)!3!] |
| Facet Count duoprism III | 280tratess | 1120tettes | 4032pentes | 13440teshix | n! 2n-4/[(n-4)!4!] |
| Facet Count duoprism IV | 448trapent | 2016tetpent | 8064penpent | n! 2n-5/[(n-5)!5!] | |
| Facet Count duoprism V | 672triax | 3360tetax | n! 2n-6/[(n-6)!6!] | ||
| Facet Count duoprism VI | 960tetax | n! 2n-7/[(n-7)!7!] | |||
| Facet Count prism II | 84ax | 112hept | 144octo | 180enne | 2n(n-1) n! 22/[2!(n-2)!] |
| Facet Count hypercube | 14ax | 16hept | 18octo | 20enne | 2n n! 21/[1!(n-1)!] |
| Circumradius | sqrt[9+2 sqrt(2)]/2 1.719624 | sqrt[(5+sqrt(2))/2] 1.790840 | sqrt[11+2 sqrt(2)]/2 1.859330 | sqrt[(6+sqrt(2))/2] 1.925385 | sqrt[(n+2)+sqrt(8)]/2 |
| Inradius wrt. simplex facets | [7+sqrt(2)]/sqrt(28) 1.590137 | [1+4 sqrt(2)]/4 1.664214 | [9+sqrt(2)]/6 1.735702 | [1+5 sqrt(2)]/sqrt(20) 1.804746 | [n+sqrt(2)]/sqrt(4n) |
| Inradius wrt. prism I facets | [1+3 sqrt(2)]/sqrt(12) 1.513420 | [7+sqrt(2)]/sqrt(28) 1.590137 | [1+4 sqrt(2)]/4 1.664214 | [9+sqrt(2)]/6 1.735702 | [(n-1)+sqrt(2)]/sqrt[4(n-1)] |
| Inradius wrt. d.pr. I fac. | [5+sqrt(2)]/sqrt(20) 1.434262 | [1+3 sqrt(2)]/sqrt(12) 1.513420 | [7+sqrt(2)]/sqrt(28) 1.590137 | [1+4 sqrt(2)]/4 1.664214 | [(n-2)+sqrt(2)]/sqrt[4(n-2)] |
| Inradius wrt. d.pr. II fac. | [1+2 sqrt(2)]/sqrt(8) 1.353553 | [5+sqrt(2)]/sqrt(20) 1.434262 | [1+3 sqrt(2)]/sqrt(12) 1.513420 | [7+sqrt(2)]/sqrt(28) 1.590137 | [(n-3)+sqrt(2)]/sqrt[4(n-3)] |
| Inradius wrt. d.pr. III fac. | [3+sqrt(2)]/sqrt(12) 1.274274 | [1+2 sqrt(2)]/sqrt(8) 1.353553 | [5+sqrt(2)]/sqrt(20) 1.434262 | [1+3 sqrt(2)]/sqrt(12) 1.513420 | [(n-4)+sqrt(2)]/sqrt[4(n-4)] |
| Inradius wrt. d.pr. IV fac. | [3+sqrt(2)]/sqrt(12) 1.274274 | [1+2 sqrt(2)]/sqrt(8) 1.353553 | [5+sqrt(2)]/sqrt(20) 1.434262 | [(n-5)+sqrt(2)]/sqrt[4(n-5)] | |
| Inradius wrt. d.pr. V fac. | [3+sqrt(2)]/sqrt(12) 1.274274 | [1+2 sqrt(2)]/sqrt(8) 1.353553 | [(n-6)+sqrt(2)]/sqrt[4(n-6)] | ||
| Inradius wrt. d.pr. VI fac. | [3+sqrt(2)]/sqrt(12) 1.274274 | [(n-7)+sqrt(2)]/sqrt[4(n-7)] | |||
| Inradius wrt. prism II facets | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 |
| Inradius wrt. hyp.cube fac. | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 |
| Volume | [8792+6101 sqrt(2)]/315 55.301959 | ? | ? | ? | ? |
| Surface | ? | ? | ? | ? | ? |
| Dihedral angles simplex - (next) | arccos[-sqrt(6/7)] 157.792346° | arccos[-sqrt(7/8)] 159.295189° | arccos[-sqrt(8)/3] 160.528779° | arccos[-3/sqrt(10)] 161.565051° | arccos[-sqrt((n-1)/n)] |
| Dihedral angles prism - (next) | arccos[-sqrt(5/6)] 155.905157° | arccos[-sqrt(6/7)] 157.792346° | arccos[-sqrt(7/8)] 159.295189° | arccos[-sqrt(8)/3] 160.528779° | arccos[-sqrt((n-2)/(n-1))] |
| Dihedral angles d.pr. I - (next) | arccos[-2/sqrt(5)] 153.434949° | arccos[-sqrt(5/6)] 155.905157° | arccos[-sqrt(6/7)] 157.792346° | arccos[-sqrt(7/8)] 159.295189° | arccos[-sqrt((n-3)/(n-2))] |
| Dihedral angles d.pr. II - (next) | 150° | arccos[-2/sqrt(5)] 153.434949° | arccos[-sqrt(5/6)] 155.905157° | arccos[-sqrt(6/7)] 157.792346° | arccos[-sqrt((n-4)/(n-3))] |
| Dihedral angles d.pr. III - (next) | arccos[-sqrt(2/3)] 144.735610° | 150° | arccos[-2/sqrt(5)] 153.434949° | arccos[-sqrt(5/6)] 155.905157° | arccos[-sqrt((n-5)/(n-4))] |
| Dihedral angles d.pr. IV - (next) | arccos[-sqrt(2/3)] 144.735610° | 150° | arccos[-2/sqrt(5)] 153.434949° | arccos[-sqrt((n-6)/(n-5))] | |
| Dihedral angles d.pr. V - (next) | arccos[-sqrt(2/3)] 144.735610° | 150° | arccos[-sqrt((n-7)/(n-6))] | ||
| Dihedral angles d.pr. VI - (next) | arccos[-sqrt(2/3)] 144.735610° | arccos[-sqrt((n-8)/(n-7))] | |||
| Dihedral angles prism II - hyp.cube | 135° | 135° | 135° | 135° | 135° |
These non-convex polytopes qeCn generally are nothing but the conjugates of themaximal expanded hypercube eCn.
Note that the pattern of retrogradeness, which is required for the correct conjugacy of thevolume terms, has an interruption between the fourth and fifth dimension.This simply is because elsewise the volume values themselves would become negative, that is the choice of retrogradenessesjust got reversed thereafter.
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | x3o4/3x | x3o3o4/3x | x3o3o3o4/3x | x3o3o3o3o4/3x | x3o...o3o4/3x |
| Acronym | querco | quidpith | quacant | quitoxog | quasiexp. n-hypercube |
| Vertex Count | 24 | 64 | 160 | 384 | n 2n |
| Facet Count simplex | 8trig | 16tet | 32pen | 64hix | 2n n! 2n-0/[(n-0)!0!] |
| Facet Count prism I | 12square | 32trip | 80tepe | 192penp | n 2n-1 n! 2n-1/[(n-1)!1!] |
| Facet Count duoprism I | 80tisdip | 240squatet | n(n-1) 2n-3 n! 2n-2/[(n-2)!2!] | ||
| Facet Count duoprism II | 160tracube | n(n-1)(n-2) 2n-4/3 n! 2n-3/[(n-3)!3!] | |||
| Facet Count prism II | 24cube | 40tes | 60pent | 2n(n-1) n! 22/[2!(n-2)!] | |
| Facet Count hypercube | 6square | 8cube | 10tes | 12pent | 2n n! 21/[1!(n-1)!] |
| Circumradius | sqrt[5-2 sqrt(2)]/2 0.736813 | sqrt[(3-sqrt(2))/2] 0.890446 | sqrt[7-2 sqrt(2)]/2 1.021221 | sqrt[2-1/sqrt(2)] 1.137055 | sqrt[(n+2)-sqrt(8)]/2 |
| Inradius wrt. simplex facets | -[3-sqrt(2)]/sqrt(12) -0.457777 | [2 sqrt(2)-1]/sqrt(8) 0.646447 | [5-sqrt(2)]/sqrt(20) 0.801806 | -[3 sqrt(2)-1]/sqrt(12) -0.936070 | [n-sqrt(2)]/sqrt(4n) |
| Inradius wrt. prism I facets | (sqrt(2)-1)/2 0.207107 | -[3-sqrt(2)]/sqrt(12) -0.457777 | -[2 sqrt(2)-1]/sqrt(8) -0.646447 | [5-sqrt(2)]/sqrt(20) 0.801806 | [(n-1)-sqrt(2)]/sqrt[4(n-1)] |
| Inradius wrt. d.pr. I fac. | [3-sqrt(2)]/sqrt(12) 0.457777 | -[2 sqrt(2)-1]/sqrt(8) -0.646447 | [(n-2)-sqrt(2)]/sqrt[4(n-2)] | ||
| Inradius wrt. d.pr. II fac. | [3-sqrt(2)]/sqrt(12) 0.457777 | [(n-3)-sqrt(2)]/sqrt[4(n-3)] | |||
| Inradius wrt. prism II facets | (sqrt(2)-1)/2 0.207107 | -(sqrt(2)-1)/2 -0.207107 | -(sqrt(2)-1)/2 -0.207107 | +/− (sqrt(2)-1)/2 0.207107 | |
| Inradius wrt. hyp.cube fac. | (sqrt(2)-1)/2 0.207107 | (sqrt(2)-1)/2 0.207107 | -(sqrt(2)-1)/2 -0.207107 | -(sqrt(2)-1)/2 -0.207107 | +/− (sqrt(2)-1)/2 0.207107 |
| Volume | [10 sqrt(2)-12]/3 0.392837 | [32 sqrt(2)-43]/6 0.375806 | [355-251 sqrt(2)]/30 0.0010799 | [833-579 sqrt(2)]/45 0.314897 | ? |
| Surface | 18+2 sqrt(3) 21.464102 | [96+4 sqrt(2)+24 sqrt(3)]/3 47.742025 | [150+20 sqrt(2)+60 sqrt(3)+sqrt(5)]/3 94.814463 | [1080+300 sqrt(2)+601 sqrt(3)+30 sqrt(5)]/15 174.153910 | ? |
| Dihedral angles simplex - (next) | arccos[sqrt(2/3)] 35.264390° | 30° | arccos[2/sqrt(5)] 26.565051° | arccos[sqrt(5/6)] 24.094843° | arccos[sqrt((n-1)/n)] |
| Dihedral angles prism I - (next) | 45° | arccos[sqrt(2/3)] 35.264390° | 30° | arccos[2/sqrt(5)] 26.565051° | arccos[sqrt((n-2)/(n-1))] |
| Dihedral angles d.pr. I - (next) | arccos[sqrt(2/3)] 35.264390° | 30° | arccos[sqrt((n-3)/(n-2))] | ||
| Dihedral angles d.pr. II - (next) | arccos[sqrt(2/3)] 35.264390° | arccos[sqrt((n-4)/(n-3))] | |||
| Dihedral angles prism II - hyp.cube | 45° | 45° | 45° | 45° | |
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | x3o3o3o3o3o4/3x | x3o3o3o3o3o3o4/3x | x3o3o3o3o3o3o3o4/3x | x3o3o3o3o3o3o3o3o4/3x | x3o...o3o4/3x |
| Acronym | quiposaz | quaxoke | ? | ? | quasiexp. n-hypercube |
| Vertex Count | 896 | 2048 | 4608 | 10240 | n 2n |
| Facet Count simplex | 128hop | 256oca | 512ene | 1024day | 2n n! 2n-0/[(n-0)!0!] |
| Facet Count prism I | 448hixip | 1024hopip | 2304ocpe | 5120enep | n 2n-1 n! 2n-1/[(n-1)!1!] |
| Facet Count duoprism I | 672squapen | 1792squahix | 4608squahop | 11520squoc | n(n-1) 2n-3 n! 2n-2/[(n-2)!2!] |
| Facet Count duoprism II | 560tetcube | 1792cubpen | 5376cubhix | 15360cubhop | n(n-1)(n-2) 2n-4/3 n! 2n-3/[(n-3)!3!] |
| Facet Count duoprism III | 280tratess | 1120tettes | 4032pentes | 13440teshix | n! 2n-4/[(n-4)!4!] |
| Facet Count duoprism IV | 448trapent | 2016tetpent | 8064penpent | n! 2n-5/[(n-5)!5!] | |
| Facet Count duoprism V | 672triax | 3360tetax | n! 2n-6/[(n-6)!6!] | ||
| Facet Count duoprism VI | 960tetax | n! 2n-7/[(n-7)!7!] | |||
| Facet Count prism II | 84ax | 112hept | 144octo | 180enne | 2n(n-1) n! 22/[2!(n-2)!] |
| Facet Count hypercube | 14ax | 16hept | 18octo | 20enne | 2n n! 21/[1!(n-1)!] |
| Circumradius | sqrt[9-2 sqrt(2)]/2 1.242133 | sqrt[(5-sqrt(2))/2] 1.338990 | sqrt[11-2 sqrt(2)]/2 1.429298 | sqrt[(6-sqrt(2))/2] 1.514230 | sqrt[(n+2)-sqrt(8)]/2 |
| Inradius wrt. simplex facets | [7-sqrt(2)]/sqrt(28) 1.055614 | -[4 sqrt(2)-1]/4 -1.164214 | [9-sqrt(2)]/6 1.264298 | -[5 sqrt(2)-1]/sqrt(20) -1.357532 | [n-sqrt(2)]/sqrt(4n) |
| Inradius wrt. prism I facets | -[3 sqrt(2)-1]/sqrt(12) -0.936070 | [7-sqrt(2)]/sqrt(28) 1.055614 | -[4 sqrt(2)-1]/4 -1.164214 | [9-sqrt(2)]/6 1.264298 | [(n-1)-sqrt(2)]/sqrt[4(n-1)] |
| Inradius wrt. d.pr. I fac. | [5-sqrt(2)]/sqrt(20) 0.801806 | -[3 sqrt(2)-1]/sqrt(12) -0.936070 | [7-sqrt(2)]/sqrt(28) 1.055614 | -[4 sqrt(2)-1]/4 -1.164214 | [(n-2)-sqrt(2)]/sqrt[4(n-2)] |
| Inradius wrt. d.pr. II fac. | -[2 sqrt(2)-1]/sqrt(8) -0.646447 | [5-sqrt(2)]/sqrt(20) 0.801806 | -[3 sqrt(2)-1]/sqrt(12) -0.936070 | [7-sqrt(2)]/sqrt(28) 1.055614 | [(n-3)-sqrt(2)]/sqrt[4(n-3)] |
| Inradius wrt. d.pr. III fac. | [3-sqrt(2)]/sqrt(12) 0.457777 | -[2 sqrt(2)-1]/sqrt(8) -0.646447 | [5-sqrt(2)]/sqrt(20) 0.801806 | -[3 sqrt(2)-1]/sqrt(12) -0.936070 | [(n-4)-sqrt(2)]/sqrt[4(n-4)] |
| Inradius wrt. d.pr. IV fac. | [3-sqrt(2)]/sqrt(12) 0.457777 | -[2 sqrt(2)-1]/sqrt(8) -0.646447 | [5-sqrt(2)]/sqrt(20) 0.801806 | [(n-5)-sqrt(2)]/sqrt[4(n-5)] | |
| Inradius wrt. d.pr. V fac. | [3-sqrt(2)]/sqrt(12) 0.457777 | -[2 sqrt(2)-1]/sqrt(8) -0.646447 | [(n-6)-sqrt(2)]/sqrt[4(n-6)] | ||
| Inradius wrt. d.pr. VI fac. | [3-sqrt(2)]/sqrt(12) 0.457777 | [(n-7)-sqrt(2)]/sqrt[4(n-7)] | |||
| Inradius wrt. prism II facets | -(sqrt(2)-1)/2 -0.207107 | -(sqrt(2)-1)/2 -0.207107 | -(sqrt(2)-1)/2 -0.207107 | -(sqrt(2)-1)/2 -0.207107 | -(sqrt(2)-1)/2 -0.207107 |
| Inradius wrt. hyp.cube fac. | -(sqrt(2)-1)/2 -0.207107 | -(sqrt(2)-1)/2 -0.207107 | -(sqrt(2)-1)/2 -0.207107 | -(sqrt(2)-1)/2 -0.207107 | -(sqrt(2)-1)/2 -0.207107 |
| Volume | [8792-6101 sqrt(2)]/315 0.520264 | ? | ? | ? | ? |
| Surface | ? | ? | ? | ? | ? |
| Dihedral angles simplex - (next) | arccos[sqrt(6/7)] 22.207654° | arccos[sqrt(7/8)] 20.704811° | arccos[sqrt(8)/3] 19.471221° | arccos[3/sqrt(10)] 18.434949° | arccos[sqrt((n-1)/n)] |
| Dihedral angles prism - (next) | arccos[sqrt(5/6)] 24.094843° | arccos[sqrt(6/7)] 22.207654° | arccos[sqrt(7/8)] 20.704811° | arccos[sqrt(8)/3] 19.471221° | arccos[sqrt((n-2)/(n-1))] |
| Dihedral angles d.pr. I - (next) | arccos[2/sqrt(5)] 26.565051° | arccos[sqrt(5/6)] 24.094843° | arccos[sqrt(6/7)] 22.207654° | arccos[sqrt(7/8)] 20.704811° | arccos[sqrt((n-3)/(n-2))] |
| Dihedral angles d.pr. II - (next) | 30° | arccos[2/sqrt(5)] 26.565051° | arccos[sqrt(5/6)] 24.094843° | arccos[sqrt(6/7)] 22.207654° | arccos[sqrt((n-4)/(n-3))] |
| Dihedral angles d.pr. III - (next) | arccos[sqrt(2/3)] 35.264390° | 30° | arccos[2/sqrt(5)] 26.565051° | arccos[sqrt(5/6)] 24.094843° | arccos[sqrt((n-5)/(n-4))] |
| Dihedral angles d.pr. IV - (next) | arccos[sqrt(2/3)] 35.264390° | 30° | arccos[2/sqrt(5)] 26.565051° | arccos[sqrt((n-6)/(n-5))] | |
| Dihedral angles d.pr. V - (next) | arccos[sqrt(2/3)] 35.264390° | 30° | arccos[sqrt((n-7)/(n-6))] | ||
| Dihedral angles d.pr. VI - (next) | arccos[sqrt(2/3)] 35.264390° | arccos[sqrt((n-8)/(n-7))] | |||
| Dihedral angles prism II - hyp.cube | 45° | 45° | 45° | 45° | 45° |
These non-convex polytopes reCn (a.k.a. socco series) generally are facetings of themaximal expanded hypercube eCn.
All facets within each member of this series here are obviously prograde, except for the simplices. Those however alternate within their retrogradeness wrt. the dimensional n quite similarily as they did for thefacetorectified hypercubes frCn.
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | o3x4x4/3*a | o3x4x4/3*a3o | o3x4x4/3*a3o3o | o3x4x4/3*a3o3o3o | o3x4x4/3*a3o...o3o |
| Acronym | socco | steth | sinnont | soxaxog | retroexp. hypercube |
| Vertex Count | 24 | 64 | 160 | 384 | n 2n |
| Facet Count simplex | 8trig | 16tet | 32pen | 64hix | 2n |
| Facet Count hypercube | 6square | 8cube | 10tes | 12pent | 2n |
| Facet Count soc. ser. mem. | 6oc | 8socco | 10steth | 12sinnont | 2n |
| Circumradius | sqrt[5+2 sqrt(2)]/2 1.398966 | sqrt[(3+sqrt(2))/2] 1.485633 | sqrt[7+2 sqrt(2)]/2 1.567516 | sqrt[2+1/sqrt(2)] 1.645329 | sqrt[(n+2)+sqrt(8)]/2 |
| Inradius wrt. simplex facets | -[3+sqrt(2)]/sqrt(12) -1.274274 | [1+2 sqrt(2)]/sqrt(8) 1.353553 | -[5+sqrt(2)]/sqrt(20) -1.434262 | [1+3 sqrt(2)]/sqrt(12) 1.513420 | +/− [n+sqrt(2)]/sqrt(4n) |
| Inradius wrt. hyp.cube fac. | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 |
| Inradius wrt. soc. ser. mem. | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 |
| Volume | [6+8 sqrt(2)]/3 5.771236 | [19+24 sqrt(2)]/6 8.823521 | [120+149 sqrt(2)]/30 11.023927 | [451+540 sqrt(2)]/90 13.496392 | ? |
| Surface | 18+12 sqrt(2)+2 sqrt(3) 38.434664 | [72+68 sqrt(2)]/3 56.055507 | [125+120 sqrt(2)+sqrt(5)]/3 98.980565 | [900+894 sqrt(2)+2 sqrt(3)]/15 144.518068 | ? |
| Dihedral angles simplex - soc.s.m. | arccos[1/sqrt(3)] 54.735610° | 60° | arccos[1/sqrt(5)] 63.434949° | arccos[1/sqrt(6)] 65.905157° | arccos[1/sqrt(n)] |
| Dihedral angles hyp.cub. - soc.s.m. | 90° | 90° | 90° | 90° | 90° |
| Dihedral angles soc.s.m. - soc.s.m. | 90° | 90° | 90° | 90° | |
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | o3x4x4/3*a3o3o3o3o | o3x4x4/3*a3o3o3o3o3o | o3x4x4/3*a3o3o3o3o3o3o | o3x4x4/3*a3o3o3o3o3o3o3o | o3x4x4/3*a3o...o3o |
| Acronym | sososaz | sook | ? | ? | retroexp. hypercube |
| Vertex Count | 896 | 2048 | 4608 | 10240 | n 2n |
| Facet Count simplex | 128hop | 256oca | 512ene | 1024day | 2n |
| Facet Count hypercube | 14ax | 16hept | 18octo | 20enne | 2n |
| Facet Count soc. ser. mem. | 14soxaxog | 16sososaz | 18sook | 20? | 2n |
| Circumradius | sqrt[9+2 sqrt(2)]/2 1.719624 | sqrt[(5+sqrt(2))/2] 1.790840 | sqrt[11+2 sqrt(2)]/2 1.859330 | sqrt[(6+sqrt(2))/2] 1.925385 | sqrt[(n+2)+sqrt(8)]/2 |
| Inradius wrt. simplex facets | -[7+sqrt(2)]/sqrt(28) -1.590137 | [1+4 sqrt(2)]/4 1.664214 | -[9+sqrt(2)]/6 -1.735702 | [1+5 sqrt(2)]/sqrt(20) 1.804746 | +/− [n+sqrt(2)]/sqrt(4n) |
| Inradius wrt. hyp.cube fac. | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 | (1+sqrt(2))/2 1.207107 |
| Inradius wrt. soc. ser. mem. | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 |
| Volume | ? | ? | ? | ? | ? |
| Surface | ? | ? | ? | ? | ? |
| Dihedral angles simplex - soc.s.m. | arccos[1/sqrt(7)] 67.792346° | arccos[1/sqrt(8)] 69.295189° | arccos(1/3) 70.528779° | arccos[1/sqrt(10)] 71.565051° | arccos[1/sqrt(n)] |
| Dihedral angles hyp.cub. - soc.s.m. | 90° | 90° | 90° | 90° | 90° |
| Dihedral angles soc.s.m. - soc.s.m. | 90° | 90° | 90° | 90° | 90° |
These non-convex polytopes qreCn (a.k.a. gocco series) generally are memberwise conjugates of theretroexpanded hypercube reCn.Thence they are related to thequasiexpanded hypercube qeCnin a very similar way as the former had been to the non-quasi variants,i.e. themaximal expanded hypercubes eCn.In fact the qeCn are facetings of those.
Moreover it happens that all facets within each member of this series are fully prograde, without any exception. In fact their vertex figure always is convex. Thence those also are said to belocally convex.
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | o3x4/3x4*a | o3x4/3x4*a3o | o3x4/3x4*a3o3o | o3x4/x43*a3o3o3o | o3x4/3x4*a3o...o3o |
| Acronym | gocco | gittith | ginnont | goxaxog | quasiretroexp. hyp.cube |
| Vertex Count | 24 | 64 | 160 | 384 | n 2n |
| Facet Count simplex | 8trig | 16tet | 32pen | 64hix | 2n |
| Facet Count hypercube | 6square | 8cube | 10tes | 12pent | 2n |
| Facet Count goc. ser. mem. | 6og | 8gocco | 10gittith | 12ginnont | 2n |
| Circumradius | sqrt[5-2 sqrt(2)]/2 0.736813 | sqrt[(3-sqrt(2))/2] 0.890446 | sqrt[7-2 sqrt(2)]/2 1.021221 | sqrt[(4-sqrt(2))/2] 1.137055 | sqrt[(n+2)-sqrt(8)]/2 |
| Inradius wrt. simplex facets | [3-sqrt(2)]/sqrt(12) 0.457777 | [2 sqrt(2)-1]/sqrt(8) 0.646447 | [5-sqrt(2)]/sqrt(20) 0.801806 | [3 sqrt(2)-1]/sqrt(12) 0.936070 | [n-sqrt(2)]/sqrt(4n) |
| Inradius wrt. hyp.cube fac. | (sqrt(2)-1)/2 0.207107 | (sqrt(2)-1)/2 0.207107 | (sqrt(2)-1)/2 0.207107 | (sqrt(2)-1)/2 0.207107 | (sqrt(2)-1)/2 0.207107 |
| Inradius wrt. goc. ser. mem. | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 |
| Volume | [8 sqrt(2)-6]/3 1.771236 | [24 sqrt(2)-19]/6 2.490188 | [149 sqrt(2)-120]/30 3.023927 | [540 sqrt(2)-451]/90 3.474170 | ? |
| Surface | -6+12 sqrt(2)+2 sqrt(3) 14.434664 | [68 sqrt(2)-24]/3 24.055507 | [-65+120 sqrt(2)+sqrt(5)]/3 35.647232 | [-540+894 sqrt(2)+2 sqrt(3)]/15 48.518068 | ? |
| Dihedral angles simplex - goc.s.m. | arccos[-1/sqrt(3)] 125.264390° | 120° | arccos[-1/sqrt(5)] 116.565051° | arccos[-1/sqrt(6)] 114.094843° | arccos[-1/sqrt(n)] |
| Dihedral angles hyp.cub. - goc.s.m. | 90° | 90° | 90° | 90° | 90° |
| Dihedral angles goc.s.m. - goc.s.m. | 90° | 90° | 90° | 90° | |
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | o3x4/3x4*a3o3o3o3o | o3x4/3x4*a3o3o3o3o3o | o3x4/3x4*a3o3o3o3o3o3o | o3x4/3x4*a3o3o3o3o3o3o3o | o3x4/3x4*a3o...o3o |
| Acronym | gososaz | gook | ? | ? | quasiretroexp. hyp.cube |
| Vertex Count | 896 | 2048 | 4608 | 10240 | n 2n |
| Facet Count simplex | 128hop | 256oca | 512ene | 1024day | 2n |
| Facet Count hypercube | 14ax | 16hept | 18octo | 20enne | 2n |
| Facet Count goc. ser. mem. | 14goxaxog | 16gososaz | 18gook | 20? | 2n |
| Circumradius | sqrt[9-2 sqrt(2)]/2 1.242133 | sqrt[(5-sqrt(2))/2] 1.338990 | sqrt[11-2 sqrt(2)]/2 1.429298 | sqrt[(6-sqrt(2))/2] 1.514230 | sqrt[(n+2)-sqrt(8)]/2 |
| Inradius wrt. simplex facets | [7-sqrt(2)]/sqrt(28) 1.055614 | [4 sqrt(2)-1]/4 1.164214 | [9-sqrt(2)]/6 1.264298 | [5 sqrt(2)-1]/sqrt(20) 1.357532 | [n-sqrt(2)]/sqrt(4n) |
| Inradius wrt. hyp.cube fac. | (sqrt(2)-1)/2 0.207107 | (sqrt(2)-1)/2 0.207107 | (sqrt(2)-1)/2 0.207107 | (sqrt(2)-1)/2 0.207107 | (sqrt(2)-1)/2 0.207107 |
| Inradius wrt. goc. ser. mem. | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 | 1/2 0.5 |
| Volume | ? | ? | ? | ? | ? |
| Surface | ? | ? | ? | ? | ? |
| Dihedral angles simplex - goc.s.m. | arccos[-1/sqrt(7)] 112.207654° | arccos[-1/sqrt(8)] 110.704811° | arccos(-1/3) 109.471221° | arccos[-1/sqrt(10)] 108.434949° | arccos[-1/sqrt(n)] |
| Dihedral angles hyp.cub. - goc.s.m. | 90° | 90° | 90° | 90° | 90° |
| Dihedral angles goc.s.m. - goc.s.m. | 90° | 90° | 90° | 90° | 90° |
| Dimension | 2D | 3D | 4D | 5D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | x4x | x3x4x | x3x3x4x | x3x3x3x4x | x3x...x3x4x |
| Acronym | oc | girco | gidpith | gacnet | omnitr. n-hypercube |
| Vertex Count | 8 | 48 | 384 | 3840 | 2n n! |
| Facet Count wrt. type 1 | 4line | 8hig | 16toe | 32gippid | 2n |
| Facet Count wrt. type 2 | 4line | 12square | 32hip | 80tope | 2n-1 n |
| Facet Count wrt. type 3 | 6oc | 24op | 80hodip | 2n-2 n!/[(n-2)! 2!] | |
| Facet Count wrt. type 4 | 8girco | 40gircope | 2n-3 n!/[(n-3)! 3!] | ||
| Facet Count wrt. type 5 | 10gidpith | 2n-4 n!/[(n-4)! 4!] | |||
| Circumradius | sqrt[(2+sqrt(2))/2] 1.306563 | sqrt[13+6 sqrt(2)]/2 2.317611 | sqrt[8+3 sqrt(2)] 3.498949 | sqrt[65+20 sqrt(2)]/2 4.829189 | sqrt[n(2n2-3n+4)/3 + n(n-1) sqrt(2)]/2 |
| Inradius wrt. facet type 1 | (1+sqrt(2))/2 1.207107 | sqrt[9+6 sqrt(2)]/2 2.090770 | (2+3 sqrt(2))/2 3.121320 | sqrt[45+20 sqrt(2)]/2 4.280312 | sqrt[n(n2-2n+3)/2 + n(n-1) sqrt(2)]/2 |
| Inradius wrt. facet type 2 | (1+sqrt(2))/2 1.207107 | (3+sqrt(2))/2 2.207107 | sqrt[27+12 sqrt(2)]/2 3.315515 | sqrt[(27+10 sqrt(2))/2] 4.535534 | sqrt[(n-1)(n2+2)/2 + n(n-1) sqrt(2)]/2 |
| Inradius wrt. facet type 3 | (1+2 sqrt(2))/2 1.914214 | (5+sqrt(2))/2 3.207107 | sqrt[57+18 sqrt(2)]/2 4.540260 | ? | |
| Inradius wrt. facet type 4 | sqrt[19+6 sqrt(2)]/2 2.621320 | (7+sqrt(2))/2 4.207107 | ? | ||
| Inradius wrt. facet type 5 | sqrt[33+8 sqrt(2)]/2 3.328427 | ? | |||
| Volume | 2[1+sqrt(2)] 4.828427 | 2[11+7 sqrt(2)] 41.798990 | 2[131+92 sqrt(2)] 522.215295 | 2[2053+1564 sqrt(2)] 8529.660023 | ? |
| Surface | 8 | 12[2+sqrt(2)+sqrt(3)] 61.755172 | ? | ? | ? |
| Dihedral angles types 1 - 2 | 135° | arccos[-sqrt(2/3)] 144.735610° | 150° | arccos[-2/sqrt(5)] 153.434949° | arccos[-sqrt((n-1)/n)] |
| Dihedral angles types 1 - 3 | arccos[-1/sqrt(3)] 125.264390° | 135° | arccos[-sqrt(3/5)] 140.768480° | arccos[-sqrt((n-2)/n)] | |
| Dihedral angles types 1 - 4 | 120° | arccos[-sqrt(2/5)] 129.231520° | arccos[-sqrt((n-3)/n)] | ||
| Dihedral angles types 1 - 5 | arccos[-1/sqrt(5)] 116.565051° | arccos[-sqrt((n-4)/n)] | |||
| Dihedral angles types 2 - 3 | 135° | arccos[-sqrt(2/3)] 144.735610° | 150° | arccos[-sqrt((n-2)/(n-1))] | |
| Dihedral angles types 2 - 4 | arccos[-1/sqrt(3)] 125.264390° | 135° | arccos[-sqrt((n-3)/(n-1))] | ||
| Dihedral angles types 2 - 5 | 120° | arccos[-sqrt((n-4)/(n-1))] | |||
| Dihedral angles types 3 - 4 | 135° | arccos[-sqrt(2/3)] 144.735610° | arccos[-sqrt((n-3)/(n-2))] | ||
| Dihedral angles types 3 - 5 | arccos[-1/sqrt(3)] 125.264390° | arccos[-sqrt((n-4)/(n-2))] | |||
| Dihedral angles types 4 - 5 | 135° | arccos[-sqrt((n-4)/(n-3))] | |||
| Dimension | 6D | 7D | 8D | 9D | nD |
| Dynkin diagram | x3x3x3x3x4x | x3x3x3x3x3x4x | x3x3x3x3x3x3x4x | x3x3x3x3x3x3x3x4x | x3x...x3x4x |
| Acronym | gotaxog | guposaz | gaxoke | ? | omnitr. n-hypercube |
| Vertex Count | 46080 | 645120 | 10321920 | 185794560 | 2n n! |
| Facet Count wrt. type 1 | 64gocad | 128gotaf | 256guph | 512goxeb | 2n |
| Facet Count wrt. type 2 | 192gippiddip | 448gocadip | 1024gotafip | 2304guphip | 2n-1 n |
| Facet Count wrt. type 3 | 240otoe | 672ogippid | 1792ogocad | 4608ogotaf | 2n-2 n!/[(n-2)! 2!] |
| Facet Count wrt. type 4 | 160hagirco | 560toegirco | 1792gircogippid | 5376gircogocad | 2n-3 n!/[(n-3)! 3!] |
| Facet Count wrt. type 5 | 60gidpithip | 280hagidpith | 1120toegidpith | 4032gippidgidpith | 2n-4 n!/[(n-4)! 4!] |
| Facet Count wrt. type 6 | 12gacnet | 84gacnetip | 448hagacnet | 2016toegacnet | 2n-5 n!/[(n-5)! 5!] |
| Facet Count wrt. type 7 | 14gotaxog | 112gotaxogip | 672hagotaxog | 2n-6 n!/[(n-6)! 6!] | |
| Facet Count wrt. type 8 | 16guposaz | 144guposazip | 2n-7 n!/[(n-7)! 7!] | ||
| Facet Count wrt. type 9 | 18gaxoke | 2n-8 n!/[(n-8)! 8!] | |||
| Circumradius | sqrt[(58+15 sqrt(2))/2] 6.293378 | sqrt[189+42 sqrt(2)]/2 7.880307 | sqrt[72+14 sqrt(2)] 9.581179 | sqrt[417+72 sqrt(2)]/2 11.388847 | sqrt[n(2n2-3n+4)/3 + n(n-1) sqrt(2)]/2 |
| Inradius wrt. facet type 1 | sqrt[81+30 sqrt(2)]/2 5.554872 | sqrt[133+42 sqrt(2)]/2 6.935362 | 7+sqrt(2) 8.414214 | sqrt[297+72 sqrt(2)]/2 9.985281 | sqrt[n(n2-2n+3)/2 + n(n-1) sqrt(2)]/2 |
| Inradius wrt. facet type 2 | sqrt[95+30 sqrt(2)]/2 5.861450 | sqrt[153+42 sqrt(2)]/2 7.286923 | sqrt[231+56 sqrt(2)]/2 8.806190 | 9+sqrt(2) 10.414214 | sqrt[(n-1)(n2+2)/2 + n(n-1) sqrt(2)]/2 |
| Inradius wrt. facet type 3 | sqrt[(51+14 sqrt(2))/2] 5.949747 | sqrt[165+40 sqrt(2)]/2 7.442589 | sqrt[249+54 sqrt(2)]/2 9.018974 | ? | ? |
| Inradius wrt. facet type 4 | sqrt[99+24 sqrt(2)]/2 5.765005 | sqrt[(83+18 sqrt(2))/2] 7.363961 | sqrt[255+50 sqrt(2)]/2 9.023728 | ? | ? |
| Inradius wrt. facet type 5 | (9+sqrt(2))/2 5.207107 | sqrt[153+30 sqrt(2)]/2 6.989750 | sqrt[(123+22 sqrt(2))/2] 8.778175 | ? | ? |
| Inradius wrt. facet type 6 | sqrt[51+10 sqrt(2)]/2 4.035534 | (11+sqrt(2))/2 6.207107 | sqrt[219+36 sqrt(2)]/2 8.214495 | ? | ? |
| Inradius wrt. facet type 7 | sqrt[73+12 sqrt(2)]/2 4.742641 | (13+sqrt(2))/2 7.207107 | ? | ? | |
| Inradius wrt. facet type 8 | sqrt[99+14 sqrt(2)]/2 5.449747 | ? | ? | ||
| Inradius wrt. facet type 9 | ? | ? | |||
| Volume | ? | ? | ? | ? | ? |
| Surface | ? | ? | ? | ? | ? |
| Dihedral angles types 1 - 2 | arccos[-sqrt(5/6)] 155.905157° | arccos[-sqrt(6/7)] 157.792346° | arccos[-sqrt(7/8)] 159.295189° | arccos[-sqrt(8)/3] 160.528779° | arccos[-sqrt((n-1)/n)] |
| Dihedral angles types 1 - 3 | arccos[-sqrt(2/3)] 144.735610° | arccos[-sqrt(5/7)] 147.688467° | 150° | arccos[-sqrt(7)/3] 151.874494° | arccos[-sqrt((n-2)/n)] |
| Dihedral angles types 1 - 4 | 135° | arccos[-sqrt(4/7)] 139.106605° | arccos[-sqrt(5/8)] 142.238756° | arccos[-sqrt(2/3)] 144.735610° | arccos[-sqrt((n-3)/n)] |
| Dihedral angles types 1 - 5 | arccos[-1/sqrt(3)] 125.264390° | arccos[-sqrt(3/7)] 130.893395° | 135° | arccos[-sqrt(5)/3] 138.189685° | arccos[-sqrt((n-4)/n)] |
| Dihedral angles types 1 - 6 | arccos[-1/sqrt(6)] 114.094843° | arccos[-sqrt(2/7)] 122.311533° | arccos[-sqrt(3/8)] 127.761244° | arccos(-2/3) 131.810315° | arccos[-sqrt((n-5)/n)] |
| Dihedral angles types 1 - 7 | arccos[-1/sqrt(7)] 112.207654° | 120° | arccos[-1/sqrt(3)] 125.264390° | arccos[-sqrt((n-6)/n)] | |
| Dihedral angles types 1 - 8 | arccos[-1/sqrt(8)] 110.704811° | arccos[-sqrt(2)/3] 118.125506° | arccos[-sqrt((n-7)/n)] | ||
| Dihedral angles types 1 - 9 | arccos(-1/3) 109.471221° | arccos[-sqrt((n-8)/n)] | |||
| Dihedral angles types 2 - 3 | arccos[-2/sqrt(5)] 153.434949° | arccos[-sqrt(5/6)] 155.905157° | arccos[-sqrt(6/7)] 157.792346° | arccos[-sqrt(7/8)] 159.295189° | arccos[-sqrt((n-2)/(n-1))] |
| Dihedral angles types 2 - 4 | arccos[-sqrt(3/5)] 140.768480° | arccos[-sqrt(2/3)] 144.735610° | arccos[-sqrt(5/7)] 147.688467° | 150° | arccos[-sqrt((n-3)/(n-1))] |
| Dihedral angles types 2 - 5 | arccos[-sqrt(2/5)] 129.231520° | 135° | arccos[-sqrt(4/7)] 139.106605° | arccos[-sqrt(5/8)] 142.238756° | arccos[-sqrt((n-4)/(n-1))] |
| Dihedral angles types 2 - 6 | arccos[-1/sqrt(5)] 116.565051° | arccos[-1/sqrt(3)] 125.264390° | arccos[-sqrt(3/7)] 130.893395° | 135° | arccos[-sqrt((n-5)/(n-1))] |
| Dihedral angles types 2 - 7 | arccos[-1/sqrt(6)] 114.094843° | arccos[-sqrt(2/7)] 122.311533° | arccos[-sqrt(3/8)] 127.761244° | arccos[-sqrt((n-6)/(n-1))] | |
| Dihedral angles types 2 - 8 | arccos[-1/sqrt(7)] 112.207654° | 120° | arccos[-sqrt((n-7)/(n-1))] | ||
| Dihedral angles types 2 - 9 | arccos[-1/sqrt(8)] 110.704811° | arccos[-sqrt((n-8)/(n-1))] | |||
| Dihedral angles types 3 - 4 | 150° | arccos[-2/sqrt(5)] 153.434949° | arccos[-sqrt(5/6)] 155.905157° | arccos[-sqrt(6/7)] 157.792346° | arccos[-sqrt((n-3)/(n-2))] |
| Dihedral angles types 3 - 5 | 135° | arccos[-sqrt(3/5)] 140.768480° | arccos[-sqrt(2/3)] 144.735610° | arccos[-sqrt(5/7)] 147.688467° | arccos[-sqrt((n-4)/(n-2))] |
| Dihedral angles types 3 - 6 | 120° | arccos[-sqrt(2/5)] 129.231520° | 135° | arccos[-sqrt(4/7)] 139.106605° | arccos[-sqrt((n-5)/(n-2))] |
| Dihedral angles types 3 - 7 | arccos[-1/sqrt(5)] 116.565051° | arccos[-1/sqrt(3)] 125.264390° | arccos[-sqrt(3/7)] 130.893395° | arccos[-sqrt((n-6)/(n-2))] | |
| Dihedral angles types 3 - 8 | arccos[-1/sqrt(6)] 114.094843° | arccos[-sqrt(2/7)] 122.311533° | arccos[-sqrt((n-7)/(n-2))] | ||
| Dihedral angles types 3 - 9 | arccos[-1/sqrt(7)] 112.207654° | arccos[-sqrt((n-8)/(n-2))] | |||
| Dihedral angles types 4 - 5 | arccos[-sqrt(2/3)] 144.735610° | 150° | arccos[-2/sqrt(5)] 153.434949° | arccos[-sqrt(5/6)] 155.905157° | arccos[-sqrt((n-4)/(n-3))] |
| Dihedral angles types 4 - 6 | arccos[-1/sqrt(3)] 125.264390° | 135° | arccos[-sqrt(3/5)] 140.768480° | arccos[-sqrt(2/3)] 144.735610° | arccos[-sqrt((n-5)/(n-3))] |
| Dihedral angles types 4 - 7 | 120° | arccos[-sqrt(2/5)] 129.231520° | 135° | arccos[-sqrt((n-6)/(n-3))] | |
| Dihedral angles types 4 - 8 | arccos[-1/sqrt(5)] 116.565051° | arccos[-1/sqrt(3)] 125.264390° | arccos[-sqrt((n-7)/(n-3))] | ||
| Dihedral angles types 4 - 9 | arccos[-1/sqrt(6)] 114.094843° | arccos[-sqrt((n-8)/(n-3))] | |||
| Dihedral angles types 5 - 6 | 135° | arccos[-sqrt(2/3)] 144.735610° | 150° | arccos[-2/sqrt(5)] 153.434949° | arccos[-sqrt((n-5)/(n-4))] |
| Dihedral angles types 5 - 7 | arccos[-1/sqrt(3)] 125.264390° | 135° | arccos[-sqrt(3/5)] 140.768480° | arccos[-sqrt((n-6)/(n-4))] | |
| Dihedral angles types 5 - 8 | 120° | arccos[-sqrt(2/5)] 129.231520° | arccos[-sqrt((n-7)/(n-4))] | ||
| Dihedral angles types 5 - 9 | arccos[-1/sqrt(5)] 116.565051° | arccos[-sqrt((n-8)/(n-4))] | |||
| Dihedral angles types 6 - 7 | 135° | arccos[-sqrt(2/3)] 144.735610° | 150° | arccos[-sqrt((n-6)/(n-5))] | |
| Dihedral angles types 6 - 8 | arccos[-1/sqrt(3)] 125.264390° | 135° | arccos[-sqrt((n-7)/(n-5))] | ||
| Dihedral angles types 6 - 9 | 120° | arccos[-sqrt((n-8)/(n-5))] | |||
| Dihedral angles types 7 - 8 | 135° | arccos[-sqrt(2/3)] 144.735610° | arccos[-sqrt((n-7)/(n-6))] | ||
| Dihedral angles types 7 - 9 | arccos[-1/sqrt(3)] 125.264390° | arccos[-sqrt((n-8)/(n-6))] | |||
| Dihedral angles types 8 - 9 | 135° | arccos[-sqrt((n-8)/(n-7))] |
As these polytopes Dn generally are nothing but the alternation of theregular hypercube Cn,and Cn in turn is the prism of Cn-1 atop Cn-1, so Dn likewisecan be described as thesegmentotope of the demihypercube Dn-1 atop the alternate demihypercube ~Dn-1.Thence, by means of thelace prism notation, Dn = x3o3o *b3o...o3o (n nodes) can be described as well asxo3oo3ox *b3oo...oo3oo&#x (n-1 node positions),which as such is nothing else than the demihypercubicalterprism.
A short consideration of general demihypercubes already occuredhere as well. Furthermore are demihypercubes special cases of theCoxeter-Elte-Gosset polytopes km,n, in fact those generally are clearly the ones of the form 1(n-2),1.
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | x3o3o | x3o3o *b3o | x3o3o *b3o3o | x3o3o *b3o3o3o | x3o3o *b3o...o3o |
| Acronym | tet | hex | hin | hax | n-demihypercube |
| Vertex Count | 4trig | 8oct | 16rap | 32rix | 2n-1 |
| Facet Count simplex | 4trig | 8tet | 16pen | 32hix | 2n-1 |
| Facet Count demihyp.cube | 8tet | 10hex | 12hin | 2n | |
| Circumradius | sqrt(3/8) 0.612372 | 1/sqrt(2) 0.707107 | sqrt(5/8) 0.790569 | sqrt(3)/2 0.866025 | sqrt(n/8) |
| Inradius wrt. simplex | 1/sqrt(24) 0.204124 | 1/sqrt(8) 0.353553 | 3/sqrt(40) 0.474342 | 1/sqrt(3) 0.577350 | (n-2)/sqrt(8n) |
| Inradius wrt. demihyp.cube | 1/sqrt(8) 0.353553 | 1/sqrt(8) 0.353553 | 1/sqrt(8) 0.353553 | ||
| Volume | sqrt(2)/12 0.117851 | 1/6 0.166667 | 13 sqrt(2)/120 0.153206 | 43/360 0.119444 | (1-2n-1/n!)/sqrt(2n) |
| Surface | sqrt(3) 1.732051 | 4 sqrt(2)/3 1.885618 | (10+sqrt(5))/6 2.039345 | [39 sqrt(2)+2 sqrt(3)]/30 1.953948 | [2 n!-2n-1(n-sqrt(n))]/[(n-1)! sqrt(2n-1)] |
| Dihedral angles simp. - demi. | arccos(1/3) 70.528779° (simp. - simp.) | 120° | arccos[-1/sqrt(5)] 116.565051° | arccos[-1/sqrt(6)] 114.094843° | arccos[-1/sqrt(n)] |
| Dihedral angles demi. - demi. | 90° | 90° | 90° | ||
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | x3o3o *b3o3o3o3o | x3o3o *b3o3o3o3o3o | x3o3o *b3o3o3o3o3o3o | x3o3o *b3o3o3o3o3o3o3o | x3o3o *b3o...o3o |
| Acronym | hesa | hocto | henne | hede | n-demihypercube |
| Vertex Count | 64ril | 128roc | 256rene | 512reday | 2n-1 |
| Facet Count simplex | 64hop | 128oca | 256ene | 512day | 2n-1 |
| Facet Count demihyp.cube | 14hax | 16hesa | 18hocto | 20henne | 2n |
| Circumradius | sqrt(7/8) 0.935414 | 1 | 3/sqrt(8) 1.060660 | sqrt(5)/2 1.118034 | sqrt(n/8) |
| Inradius wrt. simplex | 5/sqrt(56) 0.668153 | 3/4 0.75 | 7/sqrt(72) 0.824958 | 2/sqrt(5) 0.894427 | (n-2)/sqrt(8n) |
| Inradius wrt. demihyp.cube | 1/sqrt(8) 0.353553 | 1/sqrt(8) 0.353553 | 1/sqrt(8) 0.353553 | 1/sqrt(8) 0.353553 | 1/sqrt(8) 0.353553 |
| Volume | 311 sqrt(2)/5040 0.087266 | 157/2520 0.062302 | 2833 sqrt(2)/90720 0.044163 | 14173/453600 0.031246 | (1-2n-1/n!)/sqrt(2n) |
| Surface | [301+2 sqrt(7)]/180 1.701619 | [2+311 sqrt(2)]/315 1.402605 | 943/840 1.122619 | [14165 sqrt(2)+2 sqrt(5)]/22680 0.883457 | [2 n!-2n-1(n-sqrt(n))]/[(n-1)! sqrt(2n-1)] |
| Dihedral angles simp. - demi. | arccos[-1/sqrt(7)] 112.207654° | arccos[-1/sqrt(8)] 110.704811° | arccos(-1/3) 109.471221° | arccos[-1/sqrt(10)] 108.434949° | arccos[-1/sqrt(n)] |
| Dihedral angles demi. - demi. | 90° | 90° | 90° | 90° | 90° |
These non-convex polytopes hOn generally are facetings of theregular orthoplex On using the maximal count of it's hemifacets, thereby reducing the facet simplices to the half of the former. Moreover it happens that generally hOn-1 is thevertex figure of hOn.As On could be seen as the Sn-1-antiprism thence too hOngenerally is the (non-convex)segmentotope oftheregular simplex Sn-1 atop the dual (pseudo?) simplex -(Sn-1).In fact the even dimensional demicrosses have inversion symmetry, i.e. the pseudo part does not apply,while for the odd dimensional ones the inversion would just result in the complementof the original demicross wrt. its convex hull (the orthoplex), i.e. here the pseudo part does apply.
These polytopes never are orientable. Accordingly novolume can be calculated either.
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | hemi(x3/2o3x ) | hemi(x3o3/2o3o3*a ) | hemi(o3o3/2o3o3*a3x ) | hemi(o3o3/2o3o3*a3o3x ) | hemi(o3o3/2o3o3*a3o...o3x ) |
| Acronym | thah | tho | hehad | thox | n-demicross |
| Vertex Count | 6 | 8 | 10 | 12 | 2n |
| Facet Count simplex | 4trig | 8tet | 16pen | 32hix | 2n-1 |
| Facet Count hemi facets | 3square | 4oct | 5hex | 6tac | n |
| Circumradius | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 |
| Inradius wrt. simplex | 1/sqrt(6) 0.408248 | 1/sqrt(8) 0.353553 | 1/sqrt(10) 0.316228 | 1/sqrt(12) 0.288675 | 1/sqrt(2n) |
| Inradius wrt. hemi facets | 0 | 0 | 0 | 0 | 0 |
| Surface | 3+sqrt(3) 4.732051 | sqrt(8) 2.828427 | [5+sqrt(5)]/6 1.206011 | [3 sqrt(2)+sqrt(3)]/15 0.398313 | (n+sqrt(n)) sqrt(2n-1)/(n-1)! |
| Dihedral angles | arccos[1/sqrt(3)] 54.735610° | 60° | arccos[1/sqrt(5)] 63.434949° | arccos[1/sqrt(6)] 65.905157° | arccos[1/sqrt(n)] |
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | hemi(o3o3/2o3o3*a3o3o3x ) | hemi(o3o3/2o3o3*a3o3o3o3x ) | hemi(o3o3/2o3o3*a3o3o3o3o3x ) | hemi(o3o3/2o3o3*a3o3o3o3o3o3x ) | hemi(o3o3/2o3o3*a3o...o3x ) |
| Acronym | guhsa | zeho | ekhen | vehde | n-demicross |
| Vertex Count | 14 | 16 | 18 | 20 | 2n |
| Facet Count simplex | 64hop | 128oca | 256ene | 512day | 2n-1 |
| Facet Count hemi facets | 7gee | 8zee | 9ek | 10vee | n |
| Circumradius | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 | 1/sqrt(2) 0.707107 |
| Inradius wrt. simplex | 1/sqrt(14) 0.267261 | 1/4 0.25 | 1/sqrt(18) 0.235702 | 1/sqrt(20) 0.223607 | 1/sqrt(2n) |
| Inradius wrt. hemi facets | 0 | 0 | 0 | 0 | 0 |
| Surface | [7+sqrt(7)]/90 0.107175 | [4+8 sqrt(2)]/630 0.0243075 | 1/210 0.00476190 | [5 sqrt(2)+sqrt(5)]/11340 0.000820735 | (n+sqrt(n)) sqrt(2n-1)/(n-1)! |
| Dihedral angles | arccos[1/sqrt(7)] 67.792346° | arccos[1/sqrt(8)] 69.295189° | arccos(1/3) 70.528779° | arccos[1/sqrt(10)] 71.565051° | arccos[1/sqrt(n)] |
As the non-truncateddemihypercubes Dn generally could be described as thesegmentotope of the demihypercube Dn-1 atop the alternate demihypercube ~Dn-1, their truncations tDn become tristratic lace towers with the truncated demihypercube tDn-1 at the top side and the alternate truncated demihypercube ~tDn-1 at the bottom side. Inbetween there will be 2 vertex layers which happen to be non-uniform variants of therectified hypercube rCn-1. In fact, by means of thelace tower notation, tDn = x3o3o *b3o...o3o (n nodes) can be described as well asxuxo3xoox3oxux *b3oooo...oooo3oooo&#xt (n-1 node positions).
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | x3x3o | x3x3o *b3o | x3x3o *b3o3o | x3x3o *b3o3o3o | x3x3o *b3o...o3o |
| Acronym | tut | thex | thin | thax | n-trunc. demihyp.cube |
| Vertex Count | 12 | 48 | 160 | 480 | 2n-2 n(n-1) |
| Facet Count trunc. simpl. | 4hig | 8tut | 16tip | 32tix | 2n-1 |
| Facet Count rect. simpl. | 4trig | 8oct | 16rap | 32rix | 2n-1 |
| Facet Count trunc. demi. | 8tut | 10thex | 12thin | 2n | |
| Circumradius | sqrt(11/8) 1.172604 | sqrt(5/2) 1.581139 | sqrt(29/8) 1.903943 | sqrt(19)/2 2.179449 | sqrt[(9n-16)/8] |
| Inradius wrt. trunc. simpl. | sqrt(3/8) 0.612372 | 3/sqrt(8) 1.060660 | 9/sqrt(40) 1.423025 | sqrt(3) 1.732051 | 3(n-2)/sqrt(8n) |
| Inradius wrt. rect. simpl. | 5/sqrt(24) 1.020621 | sqrt(2) 1.414214 | 11/sqrt(40) 1.739253 | 7/sqrt(12) 2.020726 | (3n-4)/sqrt(8n) |
| Inradius wrt. trunc. demi. | 3/sqrt(8) 1.060660 | 3/sqrt(8) 1.060660 | 3/sqrt(8) 1.060660 | ||
| Volume | 23 sqrt(2)/12 2.710576 | 77/6 12.833333 | 623 sqrt(2)/24 36.710627 | 31243/360 86.786111 | ? |
| Surface | 7 sqrt(3) 12.124356 | 100 sqrt(2)/3 47.140452 | (770+87 sqrt(5))/6 160.756319 | [9345 sqrt(2)+526 sqrt(3)]/30 470.896149 | ? |
| Dihedral angles tr.simp. - re.simp. | arccos(-1/3) 109.471221° | 120° | arccos(-3/5) 126.869898° | arccos(-2/3) 131.810315° | arccos[-(n-2)/n] |
| Dihedral angles tr.simp. - tr.demi. | arccos(1/3) 70.528779° (tr.simp. - tr.simp.) | 120° | arccos[-1/sqrt(5)] 116.565051° | arccos[-1/sqrt(6)] 114.094843° | arccos[-1/sqrt(n)] |
| Dihedral angles re.simp. -tr.demi. | 120° | arccos[-1/sqrt(5)] 116.565051° | arccos[-1/sqrt(6)] 114.094843° | arccos[-1/sqrt(n)] | |
| Dihedral angles tr.demi. - tr.demi. | 90° | 90° | 90° | ||
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | x3x3o *b3o3o3o3o | x3x3o *b3o3o3o3o3o | x3x3o *b3o3o3o3o3o3o | x3x3o *b3o3o3o3o3o3o3o | x3x3o *b3o...o3o |
| Acronym | thesa | thocto | thenne | thede | n-trunc. demihyp.cube |
| Vertex Count | 1344 | 3584 | 9216 | 23040 | 2n-2 n(n-1) |
| Facet Count trunc. simpl. | 64til | 128toc | 256tene | 512teday | 2n-1 |
| Facet Count rect. simpl. | 64ril | 128roc | 256rene | 512reday | 2n-1 |
| Facet Count demihyp.cube | 14thax | 16thesa | 18thocto | 20thenne | 2n |
| Circumradius | sqrt(47/8) 2.423840 | sqrt(7) 2.645751 | sqrt(65/8) 2.850439 | sqrt(37)/2 3.041381 | sqrt[(9n-16)/8] |
| Inradius wrt. trunc. simpl. | 15/sqrt(56) 2.004459 | 9/4 2.25 | 7/sqrt(8) 2.474874 | 6/sqrt(5) 2.683282 | 3(n-2)/sqrt(8n) |
| Inradius wrt. rect. simpl. | 17/sqrt(56) 2.271721 | 5/2 2.5 | 23/sqrt(72) 2.710576 | 13/sqrt(20) 2.906888 | (3n-4)/sqrt(8n) |
| Inradius wrt. trunc. demi. | 3/sqrt(8) 1.060660 | 3/sqrt(8) 1.060660 | 3/sqrt(8) 1.060660 | 3/sqrt(8) 1.060660 | 3/sqrt(8) 1.060660 |
| Volume | 34081 sqrt(2)/240 200.824218 | ? | ? | ? | ? |
| Surface | ? | ? | ? | ? | ? |
| Dihedral angles tr.simp. - re.simp. | arccos(-5/7) 135.584691° | arccos(-3/4) 138.590378° | arccos(-7/9) 141.057559° | arccos(-4/5) 143.130102° | arccos[-(n-2)/n] |
| Dihedral angles tr.simp. - tr.demi. | arccos[-1/sqrt(7)] 112.207654° | arccos[-1/sqrt(8)] 110.704811° | arccos(-1/3) 109.471221° | arccos[-1/sqrt(10)] 108.434949° | arccos[-1/sqrt(n)] |
| Dihedral angles re.simp. - tr.demi. | arccos[-1/sqrt(7)] 112.207654° | arccos[-1/sqrt(8)] 110.704811° | arccos(-1/3) 109.471221° | arccos[-1/sqrt(10)] 108.434949° | arccos[-1/sqrt(n)] |
| Dihedral angles tr.demi. - tr.demi. | 90° | 90° | 90° | 90° | 90° |
Within these polytopes eDn generally can be described as the tristratic lace tower ofthedemihypercube Dn-1 atop the maximal expanded demihypercube eDn-1 atop the maximal expanded alternate demihypercube ~eDn-1 atop the alternate demihypercube ~Dn-1.Thence, by means of thelace tower notation,eDn = x3o3o *b3o...o3x (n nodes) can be described as well asxxoo3oooo3ooxx *b3oooo...oooo3oxxo&#xt (n-1 node positions).
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | x3x3o | x3o3o *b3x | x3o3o *b3o3x | x3o3o *b3o3o3x | x3o3o *b3o...o3x |
| Acronym | tut | rit | siphin | sochax | max-exp. n-demihyp.cube |
| Vertex Count | 12 | 32 | 80 | 192 | n 2n-1 |
| Facet Count simplex | 4trig | 8tet | 16pen | 32hix | 2n-1 |
| Facet Count exp. simpl. | 4hig | 8co | 16spid | 32scad | 2n-1 |
| Facet Count duoprism I | 160tratet | 4n(n-1)(n-2)/3 | |||
| Facet Count prism | 40tepe | 60hexip | 2n(n-1) | ||
| Facet Count demihyp.cube | 8tet | 10hex | 12hin | 2n | |
| Circumradius | sqrt(11/8) 1.172604 | sqrt(3/2) 1.224745 | sqrt(13/8) 1.274755 | sqrt(7)/2 1.322876 | sqrt[(n+8)/8] |
| Inradius wrt. simplex facets | 5/sqrt(24) 1.020621 | 3/sqrt(8) 1.060660 | 7/sqrt(40) 1.106797 | 2/sqrt(3) 1.154701 | (n+2)/sqrt(8n) |
| Inradius wrt. exp. simpl. fac. | sqrt(3/8) 0.612372 | 1/sqrt(2) 0.707107 | sqrt(5/8) 0.790569 | sqrt(3)/2 0.866025 | sqrt(n/8) |
| Inradius wrt. d.pr. I fac. | 5/sqrt(24) 1.020621 | 5/sqrt(24) 1.020621 | |||
| Inradius wrt. prism facets | 1 | 1 | 1 | ||
| Inradius wrt. demihyp.c. fac. | 3/sqrt(8) 1.060660 | 3/sqrt(8) 1.060660 | 3/sqrt(8) 1.060660 | 3/sqrt(8) 1.060660 | |
| Volume | 23 sqrt(2)/12 2.710576 | 23/6 3.833333 | 467 sqrt(2)/120 5.503648 | 2737/360 7.602778 | ? |
| Surface | 7 sqrt(3) 12.124356 | 44 sqrt(2)/3 20.741799 | [10+20 sqrt(2)+71 sqrt(5)]/6 32.840850 | [300+39 sqrt(2)+506 sqrt(3)+100 sqrt(6)]/30 49.217367 | ? |
| Dihedral angles simpl. - e.sim. | arccos(-1/3) 109.471221° | 120° | arccos(-3/5) 126.869898° | arccos(-2/3) 131.810315° | arccos[-(n-2)/n] |
| Dihedral angles e.sim. - e.sim. | arccos(1/3) 70.528779° | 90° | arccos(-1/5) 101.536959° | arccos(-1/3) 109.471221° | arccos[-(n-4)/n] |
| Dihedral angles e.sim. - d.pr. I | ? | ? | |||
| Dihedral angles e.sim. - prism | arccos[-sqrt(2/5)] 129.231520° | ? | ? | ||
| Dihedral angles e.sim. - demi. | 120° | arccos[-1/sqrt(5)] 116.565051° | arccos[-1/sqrt(6)] 114.094843° | arccos[-1/sqrt(n)] | |
| Dihedral angles prism - d.pr. I | ? | ? | |||
| Dihedral angles prism - demi. | 135° | 135° | 135° | ||
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | x3o3o *b3o3o3o3x | x3o3o *b3o3o3o3o3x | x3o3o *b3o3o3o3o3o3x | x3o3o *b3o3o3o3o3o3o3x | x3o3o *b3o...o3x |
| Acronym | suthesa | spuho | ? | ? | max-exp. n-demihyp.cube |
| Vertex Count | 448 | 1024 | 2304 | 5120 | n 2n-1 |
| Facet Count simplex | 64hop | 128oca | 256ene | 512day | 2n-1 |
| Facet Count exp. simpl. | 64staf | 128suph | 256soxeb | 512? | 2n-1 |
| Facet Count duoprism V | 15360tethop | n! 27/[7!(n-7)!] | |||
| Facet Count duoprism IV | 5376tethix | 7680hexhix | n! 26/[6!(n-6)!] | ||
| Facet Count duoprism III | 1792tetpen | 4032penhex | 8064penhin | n! 25/[5!(n-5)!] | |
| Facet Count duoprism II | 560tetdip | 1120tethex | 2016tethin | 3360tethax | n! 24/[4!(n-4)!] |
| Facet Count duoprism I | 280trahex | 448trahin | 672trahax | 960trahesa | 4n(n-1)(n-2)/3 n! 23/[3!(n-3)!] |
| Facet Count prism | 84hinnip | 112haxip | 144hesape | 180hoctope | 2n(n-1) n! 22/[2!(n-2)!] |
| Facet Count demihyp.cube | 14hax | 16hesa | 18hocto | 20henne | 2n n! 21/[1!(n-1)!] |
| Circumradius | sqrt(15/8) 1.369306 | sqrt(2) 1.414214 | sqrt(17/8) 1.457738 | 3/2 1.5 | sqrt[(n+8)/8] |
| Inradius wrt. simplex | 9/sqrt(56) 1.202676 | 5/4 1.25 | 11/sqrt(72) 1.296362 | 3/sqrt(5) 1.341641 | (n+2)/sqrt(8n) |
| Inradius wrt. exp. simpl. | sqrt(7/8) 0.935414 | 1 | 3/sqrt(8) 1.060660 | sqrt(5)/2 1.118034 | sqrt(n/8) |
| Inradius wrt. duoprism V | 9/sqrt(56) 1.202676 | 9/sqrt(56) 1.202676 (3+6)/sqrt[(1+6)8] | |||
| Inradius wrt. duoprism IV | 2/sqrt(3) 1.154701 | 2/sqrt(3) 1.154701 | 2/sqrt(3) 1.154701 (3+5)/sqrt[(1+5)8] | ||
| Inradius wrt. duoprism III | 7/sqrt(40) 1.106797 | 7/sqrt(40) 1.106797 | 7/sqrt(40) 1.106797 | 7/sqrt(40) 1.106797 (3+4)/sqrt[(1+4)8] | |
| Inradius wrt. duoprism II | 3/sqrt(8) 1.060660 | 3/sqrt(8) 1.060660 | 3/sqrt(8) 1.060660 | 3/sqrt(8) 1.060660 | 3/sqrt(8) 1.060660 (3+3)/sqrt[(1+3)8] |
| Inradius wrt. duoprism I | 5/sqrt(24) 1.020621 | 5/sqrt(24) 1.020621 | 5/sqrt(24) 1.020621 | 5/sqrt(24) 1.020621 | 5/sqrt(24) 1.020621 (3+2)/sqrt[(1+2)8] |
| Inradius wrt. prism | 1 | 1 | 1 | 1 | 1 (3+1)/sqrt[(1+1)8] |
| Inradius wrt. demihyp.cube | 3/sqrt(8) 1.060660 | 3/sqrt(8) 1.060660 | 3/sqrt(8) 1.060660 | 3/sqrt(8) 1.060660 | 3/sqrt(8) 1.060660 (3+0)/sqrt[(1+0)8] |
| Volume | ? | ? | ? | ? | ? |
| Surface | ? | ? | ? | ? | ? |
| Dihedral angles simpl. - e.sim. | arccos(-5/7) 135.584691° | arccos[-3/4) 138.590378° | arccos(-7/9) 141.057559° | arccos(-4/5) 143.130102° | arccos[-(n-2)/n] |
| Dihedral angles e.sim. - e.sim. | arccos(-3/7) 115.376934° | 120° | arccos(-5/9) 123.748989° | arccos(-3/5) 126.869898° | arccos[-(n-4)/n] |
| Dihedral angles e.sim. - d.pr. V | ? | ? | |||
| Dihedral angles e.sim. - d.pr. IV | ? | ? | ? | ||
| Dihedral angles e.sim. - d.pr. III | ? | ? | ? | ? | |
| Dihedral angles e.sim. - d.pr. II | ? | ? | ? | ? | ? |
| Dihedral angles e.sim. - d.pr. I | ? | ? | ? | ? | ? |
| Dihedral angles e.sim. - prism | ? | ? | ? | ? | ? |
| Dihedral angles e.sim. - demi. | arccos[-1/sqrt(7)] 112.207654° | arccos[-1/sqrt(8)] 110.704811° | arccos(-1/3) 109.471221° | arccos[-1/sqrt(10)] 108.434949° | arccos[-1/sqrt(n)] |
| Dihedral angles prism - d.pr. V | ? | ? | |||
| Dihedral angles prism - d.pr. IV | ? | ? | ? | ||
| Dihedral angles prism - d.pr. III | ? | ? | ? | ? | |
| Dihedral angles prism - d.pr. II | ? | ? | ? | ? | ? |
| Dihedral angles prism - d.pr. I | ? | ? | ? | ? | ? |
| Dihedral angles prism - demi. | 135° | 135° | 135° | 135° | 135° |
It is known that those series clearly terminate for n=8, i.e. that for n=9 they would result in aflat tesselations instead. This accordingly reflects itself in the provided dimension formulae:measures like circumradii and inradii all would become infinite for n=9and dihedrals likewise would all become 180° then.
| Dimension | 4D | 5D | 6D | 7D | 8D | nD |
|---|---|---|---|---|---|---|
| Dynkin diagram | o3o3x3o | o3o3o3x *c3o | o3o3o3o3x *c3o | o3o3o3o3o3x *c3o | o3o3o3o3o3o3x *c3o | o3o...o3x *c3o |
| Acronym | rap | hin | jak | naq | fy | (n-4)2,1 |
| Vertex Count | 10trip | 16rap | 27hin | 56jak | 240naq | ? |
| Facet Count simplex | 5tet | 16pen | 72hix | 576hop | 17280oca | ? |
| Facet Count orthoplex | 5oct | 10hex | 27tac | 126gee | 2160zee | ? |
| Circumradius | sqrt(3/5) 0.774597 | sqrt(5/8) 0.790569 | sqrt(2/3) 0.816497 | sqrt(3)/2 0.866025 | 1 | sqrt[(10-n)/(18-2n)] |
| Inradius wrt. simplex | 3/sqrt(40) 0.474342 | 3/sqrt(40) 0.474342 | 1/2 0.5 | 3/sqrt(28) 0.566947 | 3/4 0.75 | 3/sqrt[n(18-2n)] |
| Inradius wrt. orthoplex | 1/sqrt(10) 0.316228 | 1/sqrt(8) 0.353553 | 1/sqrt(6) 0.408248 | 1/2 0.5 | 1/sqrt(2) 0.707107 | 1/sqrt(18-2n) |
| Volume | 11 sqrt(5)/96 0.256216 | 13 sqrt(2)/120 0.153206 | sqrt(3)/16 0.108253 | 17/140 0.121429 | 57/112 0.508929 | ? |
| Surface | 25 sqrt(2)/12 2.946278 | [10+sqrt(5)]/6 2.039345 | [18 sqrt(2)+3 sqrt(3)]/20 1.532600 | [14+sqrt(7)]/10 1.664575 | [6+24 sqrt(2)]/7 5.705875 | ? |
| Dihedral angles simpl. - ortho. | arccos(-1/4) 104.477512° | arccos[-1/sqrt(5)] 116.565051° | arccos[-sqrt(3/8)] 127.761244° | arccos[-2/sqrt(7)] 139.106605° | arccos[-5/sqrt(32)] 152.114433° | arccos[-(n-3)/sqrt(4n)] |
| Dihedral angles ortho. - ortho. | arccos(1/4) 75.522488° | 90° | arccos(-1/4) 104.477512° | 120° | arccos(-3/4) 138.590378° | arccos[-(n-5)/4] |
| Dimension | 4D | 5D | 6D | 7D | 8D | nD |
|---|---|---|---|---|---|---|
| Dynkin diagram | x3o3o3o | x3o3o3o *c3o | x3o3o3o3o *c3o | x3o3o3o3o3o *c3o | x3o3o3o3o3o3o *c3o | x3o...o3o *c3o |
| Acronym | pen | tac | jak | laq | bay | 2n,1 |
| Vertex Count | 5tet | 10hex | 27hin | 126hax | 2160hesa | ? |
| Facet Count simplex | 5tet | 16pen | 72hix | 576hop | 17280oca | ? |
| Facet Count Gossetic | 16pen | 27tac | 56jak | 240laq | ? | |
| Circumradius | sqrt(2/5) 0.632456 | 1/sqrt(2) 0.707107 | sqrt(2/3) 0.816497 | 1 | sqrt(2) 1.414214 | sqrt[2/(9-n)] |
| Inradius wrt. simplex | 1/sqrt(40) 0.158114 | 1/sqrt(10) 0.316228 | 1/2 0.5 | 2/sqrt(7) 0.755929 | 5/4 1.25 | (n-3)/sqrt[2n(9-n)] |
| Inradius wrt. Gossetic | 1/sqrt(10) 0.316228 | 1/sqrt(6) 0.408248 | 1/sqrt(3) 0.577350 | 1 | sqrt[2/((10-n)(9-n))] | |
| Volume | sqrt(5)/96 0.023292 | sqrt(2)/30 0.047140 | sqrt(3)/16 0.108253 | 37/70 0.528571 | 1791/112 15.991071 | ? |
| Surface | 5 sqrt(2)/12 0.589256 | sqrt(5)/3 0.745356 | [18 sqrt(2)+3 sqrt(3)]/20 1.532600 | [35 sqrt(3)+sqrt(7)]/10 6.326753 | 894/7 127.714286 | ? |
| Dihedral angles simpl. - Goss. | arccos(1/4) 75.522488° simpl. - simpl. | arccos(-3/5) 126.869898° | arccos[-sqrt(3/8)] 127.761244° | arccos[-sqrt(3/7)] 130.893395° | arccos(-3/4) 138.590378° | arccos[-3/sqrt(n(10-n))] |
| Dihedral angles Goss. - Goss. | arccos(-1/4) 104.477512° | arccos(-1/3) 109.471221° | 120° | arccos[-1/(10-n)] |
| Dimension | 4D | 5D | 6D | 7D | 8D | nD |
|---|---|---|---|---|---|---|
| Dynkin diagram | o3o3o3x | o3o3o3o *c3x | o3o3o3o3o *c3x | o3o3o3o3o3o *c3x | o3o3o3o3o3o3o *c3x | o3o...o3o *c3x |
| Acronym | pen | hin | mo | lin | bif | 1n,2 |
| Vertex Count | 5tet | 16rap | 72dot | 576bril | 17280broc | ? |
| Facet Count demihypercube | 5tet | 10hex | 27hin | 126hax | 2160hesa | ? |
| Facet Count Gossetic | 16pen | 27hin | 56mo | 240lin | ? | |
| Circumradius | sqrt(2/5) 0.632456 | sqrt(5/8) 0.790569 | 1 | sqrt(7)/2 1.322876 | 2 | sqrt[n/(18-2n)] |
| Inradius wrt. demihypercube | 1/sqrt(40) 0.158114 | 1/sqrt(8) 0.353553 | sqrt(3/8) 0.612372 | 1 | 5/sqrt(8) 1.767767 | (n-3)/sqrt[8(9-n)] |
| Inradius wrt. Gossetic | 3/sqrt(40) 0.474342 | sqrt(3/8) 0.612372 | sqrt(3)/2 0.866025 | 3/2 1.5 | 3/sqrt[2(10-n)(9-n)] | |
| Volume | sqrt(5)/96 0.023292 | 13 sqrt(2)/120 0.153206 | 39 sqrt(3)/80 0.844375 | 8 | 44985/112 401.651786 | ? |
| Surface | 5 sqrt(2)/12 0.589256 | [10+sqrt(5)]/6 2.039345 | 117 sqrt(2)/20 8.273149 | [301+546 sqrt(3)]/20 62.334987 | [13440+933 sqrt(2)]/7 2108.494465 | ? |
| Dihedral angles demi. - demi. | arccos(1/4) 75.522488° | 90° | arccos(-1/4) 104.477512° | 120° | arccos(-3/4) 138.590378° | arccos[-(n-5)/4] |
| Dihedral angles demi. - Goss. | arccos[-1/sqrt(5)] 116.565051° | 120° | arccos[-1/sqrt(3)] 125.264390° | 135° | arccos[-1/sqrt(10-n)] | |
| Dihedral angles Goss. - Goss. | arccos(-1/4) 104.477512° | arccos(-1/3) 109.471221° | 120° | arccos[-1/(10-n)] |
| Dimension | 4D | 5D | 6D | 7D | 8D | nD |
|---|---|---|---|---|---|---|
| Dynkin diagram | o3x3o3x | o3o3x3o *c3o | o3o3o3x3o *c3o | o3o3o3o3x3o *c3o | o3o3o3o3o3x3o *c3o | o3o...o3x3o *c3o |
| Acronym | srip | nit | rojak | ranq | riffy | rect. (n-4)2,1 |
| Vertex Count | 30xx ox&#q | 80tisdip | 216rappip | 756hinnip | 6720jakip | ? |
| Facet Count rect. simpl. | 5oct | 16rap | 72rix | 576ril | 17280roc | ? |
| Facet Count Gossetic | 10trip | 16rap | 27hin | 56jak | 240naq | ? |
| Facet Count rect. ortho. | 5co | 10ico | 27rat | 126rag | 2160rez | ? |
| Circumradius | sqrt(7/5) 1.183216 | sqrt(3/2) 1.224745 | sqrt(5/3) 1.290994 | sqrt(2) 1.414214 | sqrt(3) 1.732051 | sqrt[(11-n)/(9-n)] |
| Inradius wrt. rect. simpl. | 3/sqrt(10) 0.948683 | 3/sqrt(10) 0.948683 | 1 | 3/sqrt(7) 1.133893 | 3/2 1.5 | sqrt[18/(n(9-n))] |
| Inradius wrt. Gossetic | 7/sqrt(60) 0.903696 | 3/sqrt(10) 0.948683 | 5/sqrt(24) 1.020621 | 2/sqrt(3) 1.154701 | 3/2 1.5 | (11-n)/sqrt[2(10-n)(9-n)] |
| Inradius wrt. rect. ortho. | sqrt(2/5) 0.632456 | 1/sqrt(2) 0.707107 | sqrt(2/3) 0.816497 | 1 | sqrt(2) 1.414214 | sqrt[2/(9-n)] |
| Volume | 73 sqrt(5)/48 3.400687 | 31 sqrt(2)/10 4.384062 | 601 sqrt(3)/160 6.506016 | 1053/70 15.042857 | 3597/28 128.464286 | ? |
| Surface | [20 sqrt(2)+5 sqrt(3)]/2 18.472263 | [60+11 sqrt(5)]/3 28.198916 | [1089 sqrt(2)+156 sqrt(3)]/40 45.256962 | [812+35 sqrt(3)+57 sqrt(7)]/10 102.342960 | [924+2904 sqrt(2)]/7 718.696598 | ? |
| Dihedral angles r.sim. - Goss. | arccos[-sqrt(3/8)] 127.761244° | arccos(-3/5) 126.869898° | arccos[-sqrt(3/8)] 127.761244° | arccos[-sqrt(3/7)] 130.893395° | arccos(-3/4) 138.590378° | arccos[-3/sqrt(n(10-n))] |
| Dihedral angles r.sim. - r.orth. | arccos(-1/4) 104.477512° | arccos[-1/sqrt(5)] 116.565051° | arccos[-sqrt(3/8)] 127.761244° | arccos[-2/sqrt(7)] 139.106605° | arccos[-5/sqrt(32)] 152.114433° | arccos[-(n-3)/sqrt(4n)] |
| Dihedral angles Goss. - r.orth. | arccos[-1/sqrt(6)] 114.094843° | arccos[-1/sqrt(5)] 116.565051° | 120° | arccos[-1/sqrt(3)] 125.264390° | 135° | arccos[-1/sqrt(10-n)] |
| Dihedral angles r.orth. - r.orth. | arccos(1/4) 75.522488° | 90° | arccos(-1/4) 104.477512° | 120° | arccos(-3/4) 138.590378° | arccos[-(n-5)/4] |
| Dimension | 4D | 5D | 6D | 7D | 8D | nD |
|---|---|---|---|---|---|---|
| Dynkin diagram | o3x3o3o | o3x3o3o *c3o | o3x3o3o3o *c3o | o3x3o3o3o3o *c3o | o3x3o3o3o3o3o *c3o | o3x3o...o3o *c3o |
| Acronym | rap | rat | rojak | rolaq | robay | rectified 2n,1 |
| Vertex Count | 10trip | 40ope | 216rappip | 2016rixip | 69120rillip | ? |
| Facet Count rect. simplex | 5oct | 16rap | 72rix | 576ril | 17280roc | ? |
| Facet Count rect. Gossetic | 16rap | 27rat | 56rojak | 240rolaq | ? | |
| Facet Count demihypercube | 5tet | 10hex | 27hin | 126hax | 2160hesa | ? |
| Circumradius | sqrt(3/5) 0.774597 | 1 | sqrt(5/3) 1.290994 | sqrt(3) 1.732051 | sqrt(7) 2.645751 | sqrt[(n-1)/(9-n)] |
| Inradius wrt. rect. simplex | 1/sqrt(10) 0.316228 | sqrt(2/5) 0.632456 | 1 | 4/sqrt(7) 1.511858 | 5/2 2.5 | (n-3) sqrt[2/(n(9-n))] |
| Inradius wrt. rect. Gossetic | sqrt(2/5) 0.632456 | sqrt(2/3) 0.816497 | 2/sqrt(3) 1.154701 | 2 | sqrt[8/((10-n)(9-n))] | |
| Inradius wrt. demihypercube | 3/sqrt(40) 0.474342 | 1/sqrt(2) 0.707107 | 5/sqrt(24) 1.020621 | 3/2 1.5 | 7/sqrt(8) 2.474874 | (n-1)/sqrt[8(9-n)] |
| Volume | 11 sqrt(5)/96 0.256216 | 9 sqrt(2)/10 1.272792 | 601 sqrt(3)/160 6.506016 | 18643/280 66.582143 | 457563/112 4085.383929 | ? |
| Surface | 25 sqrt(2)/12 2.946278 | (5+11 sqrt(5))/3 9.865583 | [1089 sqrt(2)+156 sqrt(3)]/40 45.256962 | [301+4207 sqrt(3)+114 sqrt(7)]/20 394.467670 | ? | ? |
| Dihedral angles r.simp. - r.Goss. | arccos(1/4) 75.522488° r.simp. - r.simp. | arccos(-3/5) 126.869898° | arccos[-sqrt(3/8)] 127.761244° | arccos[-sqrt(3/7)] 130.893395° | arccos(-3/4) 138.590378° | arccos[-3/sqrt(n(10-n))] |
| Dihedral angles r.Goss. - r.Goss. | arccos(-1/4) 104.477512° | arccos(-1/3) 109.471221° | 120° | arccos[-1/(10-n)] | ||
| Dihedral angles r.simp. - demi. | arccos(-1/4) 104.477512° | arccos[-1/sqrt(5)] 116.565051° | arccos[-sqrt(3/8)] 127.761244° | arccos[-2/sqrt(7)] 139.106605° | arccos[-5/sqrt(32)] 152.114433° | arccos[-(n-3)/sqrt(4n)] |
| Dihedral angles r.Goss. - demi. | arccos[-1/sqrt(5)] 116.565051° | 120° | arccos[-1/sqrt(3)] 125.264390° | 135° | arccos[-1/sqrt(10-n)] |
The rectified Gossetic r(1n,2) surely can be described likewise as the birectified Gossetic br(2n,1). In fact it is that polytope, where in itsCoxeter-Dynkin diagram exactly the bifurcation node is marked.
| Dimension | 4D | 5D | 6D | 7D | 8D | nD |
|---|---|---|---|---|---|---|
| Dynkin diagram | o3o3x3o | o3o3x3o *c3o | o3o3x3o3o *c3o | o3o3x3o3o3o *c3o | o3o3x3o3o3o3o *c3o | o3o3x3o...o3o *c3o |
| Acronym | rap | nit | ram | lanq | buffy | rectified 1n,2 |
| Vertex Count | 10trip | 80tisdip | 720tratrip | 10080tratepe | 483840trippen | ? |
| Facet Count birect. simp. | 5tet | 16rap | 72dot | 576bril | 17280broc | ? |
| Facet Count rect. Goss. | 16rap | 27nit | 56ram | 240lanq | ? | |
| Facet Count birect. hyp.c. | 5oct | 10ico | 27nit | 126brox | 2160bersa | ? |
| Circumradius | sqrt(3/5) 0.774597 | sqrt(3/2) 1.224745 | sqrt(3) 1.732051 | sqrt(6) 2.449490 | sqrt(15) 3.872983 | sqrt[3(n-3)/(9-n)] |
| Inradius wrt. birect. simp. | 3/sqrt(40) 0.474342 | 3/sqrt(10) 0.948683 | 3/2 1.5 | 6/sqrt(7) 2.267787 | 15/4 3.75 | 3(n-3)/sqrt[2n(9-n)] |
| Inradius wrt. rect. Gossetic | 3/sqrt(10) 0.948683 | sqrt(3/2) 1.224745 | sqrt(3) 1.732051 | 3 | sqrt[18/((10-n)(9-n))] | |
| Inradius wrt. birect. hyp.c. | 1/sqrt(10) 0.316228 | 1/sqrt(2) 0.707107 | sqrt(3/2) 1.224745 | 2 | 5/sqrt(2) 3.535534 | (n-3)/sqrt(18-2n) |
| Volume | 11 sqrt(5)/96 0.256216 | 31 sqrt(2)/10 4.384062 | 243 sqrt(3)/8 52.611043 | ? | ? | ? |
| Surface | 25 sqrt(2)/12 2.946278 | [60+11 sqrt(5)]/3 28.198916 | [1674 sqrt(2)+99 sqrt(3)]/10 253.886653 | ? | ? | ? |
| Dihedral angles bir.s. - r.Goss. | arccos(-3/5) 126.869898° | arccos[-sqrt(3/8)] 127.761244° | arccos[-sqrt(3/7)] 130.893395° | arccos(-3/4) 138.590378° | arccos[-3/sqrt(n(10-n))] | |
| Dihedral angles bir.s. - bir.h.c. | arccos(-1/4) 104.477512° | arccos[-1/sqrt(5)] 116.565051° | arccos[-sqrt(3/8)] 127.761244° | arccos[-2/sqrt(7)] 139.106605° | arccos[-5/sqrt(32)] 152.114433° | arccos[-(n-3)/sqrt(4n)] |
| Dihedral angles r.Goss. - r.Goss. | arccos(-1/4) 104.477512° | arccos(-1/3) 109.471221° | 120° | arccos[-1/(10-n)] | ||
| Dihedral angles r.Goss. - bir.h.c. | arccos[-1/sqrt(5)] 116.565051° | 120° | arccos[-1/sqrt(3)] 125.264390° | 135° | arccos[-1/sqrt(10-n)] | |
| Dihedral angles bir.h.c. - bir.h.c. | arccos(1/4) 75.522488° | 90° | arccos(-1/4) 104.477512° | 120° | arccos(-3/4) 138.590378° | arccos[-(n-5)/4] |
| Dimension | 4D | 5D | 6D | 7D | 8D | nD |
|---|---|---|---|---|---|---|
| Dynkin diagram | o3x3x3x | o3o3x3x *c3o | o3o3o3x3x *c3o | o3o3o3o3x3x *c3o | o3o3o3o3o3x3x *c3o | o3o...o3x3x *c3o |
| Acronym | grip | thin | tojak | tanq | tiffy | truncated (n-4)2,1 |
| Vertex Count | 60 | 160 | 432 | 1512 | 13440 | ? |
| Facet Count trunc. simplex | 5tut | 16tip | 72tix | 576til | 17280toc | ? |
| Facet Count Gossetic | 10trip | 16rap | 27hin | 56jak | 240naq | ? |
| Facet Count trunc. ortho. | 5toe | 10thex | 27tot | 126tag | 2160taz | ? |
| Circumradius | sqrt(17/5) 1.843909 | sqrt(29/8) 1.903943 | 2 | sqrt(19)/2 2.179449 | sqrt(7) 2.645751 | sqrt[(54-5n)/(18-2n)] |
| Inradius wrt. trunc. simplex | 9/sqrt(40) 1.423025 | 9/sqrt(40) 1.423025 | 3/2 1.5 | 9/sqrt(28) 1.700840 | 9/4 2.25 | 9/sqrt[n(18-2n)] |
| Inradius wrt. Gossetic | 13/sqrt(60) 1.678293 | 11/sqrt(40) 1.739253 | sqrt(27/8) 1.837117 | 7/sqrt(12) 2.020726 | 5/2 2.5 | (21-2n)/sqrt[(18-2n)(10-n)] |
| Inradius wrt. trunc. ortho. | 3/sqrt(10) 0.948683 | 3/sqrt(8) 1.060660 | sqrt(3/2) 1.224745 | 3/2 1.5 | 3/sqrt(2) 2.121320 | 3/sqrt(18-2n) |
| Volume | 287 sqrt(5)/32 20.054735 | 623 sqrt(2)/24 36.710627 | 7251 sqrt(3)/160 78.494378 | 37109/140 265.064286 | ? | ? |
| Surface | [595 sqrt(2)+30 sqrt(3)]/12 74.451549 | [770+87 sqrt(5)]/6 160.756319 | [8685 sqrt(2)+1422 sqrt(3)]/40 368.635526 | [10122+35 sqrt(3)+722 sqrt(7)]/10 1209.285422 | ? | ? |
| Dihedral angles tr.simp. - Goss. | arccos[-sqrt(3/8)] 127.761244° | arccos(-3/5) 126.869898° | arccos[-sqrt(3/8)] 127.761244° | arccos[-sqrt(3/7)] 130.893395° | arccos(-3/4) 138.590378° | arccos[-3/sqrt(n(10-n))] |
| Dihedral angles tr.sim. - tr.orth. | arccos(-1/4) 104.477512° | arccos[-1/sqrt(5)] 116.565051° | arccos[-sqrt(3/8)] 127.761244° | arccos[-2/sqrt(7)] 139.106605° | arccos[-5/sqrt(32)] 152.114433° | arccos[-(n-3)/sqrt(4n)] |
| Dihedral angles Goss. - tr.orth. | arccos[-1/sqrt(6)] 114.094843° | arccos[-1/sqrt(5)] 116.565051° | 120° | arccos[-1/sqrt(3)] 125.264390° | 135° | arccos[-1/sqrt(10-n)] |
| Dihedral angles tr.orth. - tr.orth. | arccos(1/4) 75.522488° | 90° | arccos(-1/4) 104.477512° | 120° | arccos(-3/4) 138.590378° | arccos[-(n-5)/4] |
| Dimension | 4D | 5D | 6D | 7D | 8D | nD |
|---|---|---|---|---|---|---|
| Dynkin diagram | x3x3o3o | x3x3o3o *c3o | x3x3o3o3o *c3o | x3x3o3o3o3o *c3o | x3x3o3o3o3o3o *c3o | x3x3o...o3o *c3o |
| Acronym | tip | tot | tojak | talq | toby | truncated 2n,1 |
| Vertex Count | 20 | 80 | 432 | 4032 | 138240 | ? |
| Facet Count trunc. simplex | 5tut | 16tip | 72tix | 576til | 17280toc | ? |
| Facet Count trunc. Gossetic | 16tip | 27tot | 56tojak | 240talq | ? | |
| Facet Count demihypercube | 5tet | 10hex | 27hin | 126hax | 2160hesa | ? |
| Circumradius | sqrt(8/5) 1.264911 | sqrt(5/2) 1.581139 | 2 | sqrt(7) 2.645751 | 4 | sqrt[2n/(9-n)] |
| Inradius wrt. trunc. simplex | 3/sqrt(40) 0.474342 | 3/sqrt(10) 0.948683 | 3/2 1.5 | 6/sqrt(7) 2.267787 | 15/4 3.75 | 3(n-3)/sqrt[2n(9-n)] |
| Inradius wrt. trunc. Gossetic | 3/sqrt(10) 0.948683 | sqrt(3/2) 1.224745 | sqrt(3) 1.732051 | 3 | sqrt[18/((9-n)(10-n))] | |
| Inradius wrt. demihypercube | 7/sqrt(40) 1.106797 | sqrt(2) 1.414214 | sqrt(27/8) 1.837117 | 5/2 2.5 | 11/sqrt(8) 3.889087 | (n+3)/sqrt[8(9-n)] |
| Volume | 19 sqrt(5)/24 1.770220 | 119 sqrt(2)/15 11.219428 | 7251 sqrt(3)/160 78.494378 | ? | ? | ? |
| Surface | 10 sqrt(2) 14.142136 | (5+76 sqrt(5))/3 58.313722 | [8685 sqrt(2)+1422 sqrt(3)]/40 368.635526 | ? | ? | ? |
| Dihedral angles tr.sim. - tr.Goss. | arccos(1/4) 75.522488° tr.sim. - tr.sim. | arccos(-3/5) 126.869898° | arccos[-sqrt(3/8)] 127.761244° | arccos[-sqrt(3/7)] 130.893395° | arccos(-3/4) 138.590378° | arccos[-3/sqrt(n(10-n))] |
| Dihedral angles tr.Goss. - tr.Goss. | arccos(-1/4) 104.477512° | arccos(-1/3) 109.471221° | 120° | arccos[-1/(10-n)] | ||
| Dihedral angles tr.sim. - demi. | arccos(-1/4) 104.477512° | arccos[-1/sqrt(5)] 116.565051° | arccos[-sqrt(3/8)] 127.761244° | arccos[-2/sqrt(7)] 139.106605° | arccos[-5/sqrt(32)] 152.114433° | arccos[-(n-3)/sqrt(4n)] |
| Dihedral angles tr.Goss. - demi. | arccos[-1/sqrt(5)] 116.565051° | 120° | arccos[-1/sqrt(3)] 125.264390° | 135° | arccos[-1/sqrt(10-n)] |
| Dimension | 4D | 5D | 6D | 7D | 8D | nD |
|---|---|---|---|---|---|---|
| Dynkin diagram | o3o3x3x | o3o3x3o *c3x | o3o3x3o3o *c3x | o3o3x3o3o3o *c3x | o3o3x3o3o3o3o *c3x | o3o3x3o...o3o *c3x |
| Acronym | tip | thin | tim | tolin | tabif | truncated 1n,2 |
| Vertex Count | 20 | 160 | 1440 | 20160 | 967680 | ? |
| Facet Count birect. simp. | 5tet | 16rap | 72dot | 576bril | 17280broc | ? |
| Facet Count trunc. Goss. | 16tip | 27thin | 56tim | 240tolin | ? | |
| Facet Count trunc. demih.c. | 5tut | 10thex | 27thin | 126thax | 2160thesa | ? |
| Circumradius | sqrt(8/5) 1.264911 | sqrt(29/8) 1.903943 | sqrt(7) 2.645751 | sqrt(55)/2 3.708099 | sqrt(34) 5.830952 | sqrt[(13n-36)/(18-2n)] |
| Inradius wrt. birect. simp. | 7/sqrt(40) 1.106797 | 11/sqrt(40) 1.739253 | 5/2 2.5 | 19/sqrt(28) 3.590662 | 23/4 5.75 | (4n-9)/sqrt[2n(9-n)] |
| Inradius wrt. trunc. Goss. | 9/sqrt(40) 1.423025 | sqrt(27/8) 1.837117 | sqrt(27)/2 2.598076 | 9/2 4.5 | 9/sqrt[2(9-n)(10-n)] | |
| Inradius wrt. trunc. demih.c. | 3/sqrt(40) 0.474342 | 3/sqrt(8) 1.060660 | sqrt(27/8) 1.837117 | 3 | 15/sqrt(8) 5.303301 | 3(n-3)/sqrt[8(9-n)] |
| Volume | 19 sqrt(5)/24 1.770220 | 623 sqrt(2)/24 36.710627 | 5673 sqrt(3)/16 614.120264 | ? | ? | ? |
| Surface | 10 sqrt(2) 14.142136 | [770+87 sqrt(5)]/6 160.756319 | [28035 sqrt(2)+198 sqrt(3)]/20 1999.521164 | ? | ? | ? |
| Dihedral angles bir.s. - tr.Goss. | arccos(-3/5) 126.869898° | arccos[-sqrt(3/8)] 127.761244° | arccos[-sqrt(3/7)] 130.893395° | arccos(-3/4) 138.590378° | arccos[-3/sqrt(n(10-n))] | |
| Dihedral angles bir.s. - tr.demi. | arccos(-1/4) 104.477512° | arccos[-1/sqrt(5)] 116.565051° | arccos[-sqrt(3/8)] 127.761244° | arccos[-2/sqrt(7)] 139.106605° | arccos[-5/sqrt(32)] 152.114433° | arccos[-(n-3)/sqrt(4n)] |
| Dihedral angles tr.Goss. - tr.Goss. | arccos(-1/4) 104.477512° | arccos(-1/3) 109.471221° | 120° | arccos[-1/(10-n)] | ||
| Dihedral angles tr.Goss. - tr.demi. | arccos[-1/sqrt(5)] 116.565051° | 120° | arccos[-1/sqrt(3)] 125.264390° | 135° | arccos[-1/sqrt(10-n)] | |
| Dihedral angles tr.demi. - tr.demi. | arccos(1/4) 75.522488° | 90° | arccos(-1/4) 104.477512° | 120° | arccos(-3/4) 138.590378° | arccos[-(n-5)/4] |
| Dimension | 4D | 5D | 6D | 7D | 8D | nD |
|---|---|---|---|---|---|---|
| Dynkin diagram | x3o3x3x | x3o3o3x *c3x | x3o3o3o3x *c3x | x3o3o3o3o3x *c3x | x3o3o3o3o3o3x *c3x | x3o...o3x *c3x |
| Acronym | prip | spat | spam | sethalq | spuffy | all-ends exp. En |
| Vertex Count | 60 | 320 | 2160 | 24192 | ? | ? |
| Facet Count exp. simpl. | 5co | 16spid | 72scad | 576staf | ?suph | ? |
| Facet Count exp. Goss. | 10trip | 16spid | 27siphin | 56hejak | ?shilq | ? |
| Facet Count exp. Goss. pr. | 216spiddip | 756siphinnip | ?hejakip | ? | ||
| Facet Count duoprism I | 4032traspid | ?trasiphin | ? | |||
| Facet Count duoprism II | ?tetspid | ? | ||||
| Facet Count dippip | 80tisdip | 720tratrip | 10080tratepe | ?trippen | ? | |
| Facet Count exp. simpl. pr. | 10hip | 40cope | 216spiddip | 2016scadip | ?staffip | ? |
| Facet Count exp. demicube | 5tut | 10rit | 27siphin | 126sochax | ?suthesa | ? |
| Circumradius | sqrt(13/5) 1.612452 | sqrt(7/2) 1.870829 | sqrt(5) 2.236068 | sqrt(8) 2.828427 | sqrt(17) 4.123106 | sqrt[(9+n)/(9-n)] |
| Inradius wrt. exp. simpl. | sqrt(8/5) 1.264911 | sqrt(5/2) 1.581139 | 2 | sqrt(7) 2.645751 | 4 | sqrt[2n/(9-n)] |
| Inradius wrt. exp. Goss. | 11/sqrt(60) 1.420094 | sqrt(5/2) 1.581139 | sqrt(27/8) 1.837117 | 4/sqrt(3) 2.309401 | 7/2 3.5 | (15-n)/sqrt[2(10-n)(9-n)] |
| Inradius wrt. exp. Goss. pr. | sqrt(15)/2 1.936492 | 7/sqrt(8) 2.474874 | 13/sqrt(12) 3.752777 | (21-n)/sqrt[4(11-n)(9-n)] | ||
| Inradius wrt. duoprism I | sqrt(20/3) 2.581989 | ? | ? | |||
| Inradius wrt. duoprism II | ? | ? | ||||
| Inradius wrt. dippip | 4/sqrt(6) 1.632993 | 7/sqrt(12) 2.020726 | 13/sqrt(24) 2.653614 | 31/sqrt(60) 4.002083 | (5n-9)/sqrt[12(n-3)(9-n)] | |
| Inradius wrt. exp. simpl. pr. | sqrt(27/20) 1.161895 | 3/2 1.5 | sqrt(15)/2 1.936492 | sqrt(27)/2 2.598076 | sqrt(63)/2 3.968627 | sqrt[(9n-9)/(36-4n)] |
| Inradius wrt. exp. demicube | 7/sqrt(40) 1.106797 | sqrt(2) 1.414214 | sqrt(27/8) 1.837117 | 5/2 2.5 | 11/sqrt(8) 3.889087 | (n+3)/sqrt[8(9-n)] |
| Volume | 237 sqrt(5)/32 16.560878 | 142 sqrt(2)/3 66.939442 | 17811 sqrt(3)/80 385.619462 | 34715/8 4339.375 | ? | ? |
| Surface | [215 sqrt(2)+210 sqrt(3)]/12 55.648882 | 5 [23+40 sqrt(2)+ +12 sqrt(3)+14 sqrt(5)]/3 219.430173 | [2700+4203 sqrt(2)+ +756 sqrt(3)+6300 sqrt(5)]/20 1202.029914 | [19159+58842 sqrt(2)+ +38962 sqrt(3)+4200 sqrt(6)+ +1848 sqrt(7)+14700 sqrt(15)]/20 12098.418927 | ? | ? |
| Dihedral angles e.sim. - e.Goss. | arccos[-sqrt(3/8)] 127.761244° | arccos(-3/5) 126.869898° | arccos[-sqrt(3/8)] 127.761244° | arccos[-sqrt(3/7)] 130.893395° | arccos(-3/4) 138.590378° | arccos[-3/sqrt(n(10-n))] |
| Dihedral angles e.sim. - e.Goss.p. | ? | ? | ? | ? | ||
| Dihedral angles e.Goss. - e.Goss.p. | ? | ? | ? | ? | ||
| Dihedral angles e.sim. - duop.I | ? | ? | ? | |||
| Dihedral angles e.Goss.p. - duop.I | ? | ? | ? | |||
| Dihedral angles e.sim. - duop.II | ? | ? | ||||
| Dihedral angles duop.I - duop.II | ? | ? | ||||
| Dihedral angles e.sim. - dippip | ? | ? | ? | ? | ? | |
| Dihedral angles duop.II - dippip | ? | ? | ||||
| Dihedral angles e.sim. - e.sim.p. | arccos[-sqrt(1/6)] 114.094843° | arccos[-sqrt(2/5)] 129.231520° | ? | ? | ? | ? |
| Dihedral angles e.Goss. - e.sim.p. | arccos(-2/3) 131.810315° | arccos[-sqrt(2/5)] 129.231520° | ? | ? | ? | ? |
| Dihedral angles e.Goss.p. - e.sim.p. | ? | ? | ? | ? | ||
| Dihedral angles duop.I - e.sim.p. | ? | ? | ? | |||
| Dihedral angles duop.II - e.sim.p. | ? | ? | ||||
| Dihedral angles dippip - e.sim.p. | ? | ? | ? | ? | ? | |
| Dihedral angles e.sim. - e.demic. | arccos(-1/4) 104.477512° | arccos[-1/sqrt(5)] 116.565051° | arccos[-sqrt(3/8)] 127.761244° | arccos[-2/sqrt(7)] 139.106605° | arccos[-5/sqrt(32)] 152.114433° | arccos[-(n-3)/sqrt(4n)] |
| Dihedral angles e.Goss. - e.demic. | arccos[-1/sqrt(5)] 116.565051° | 120° | arccos[-1/sqrt(3)] 125.264390° | 135° | arccos[-1/sqrt(10-n)] | |
| Dihedral angles e.Goss.p. - e.demic. | ? | ? | ? | ? | ||
| Dihedral angles duop.I - e.demic. | ? | ? | ? | |||
| Dihedral angles duop.II - e.demic. | ? | ? | ? | |||
| Dihedral angles e.sim.p. - e.demic. | arccos[-sqrt(3/8)] 127.761244° | 135° | ? | ? | ? | ? |
| Dimension | 4D | 5D | 6D | 7D | 8D | nD |
|---|---|---|---|---|---|---|
| Dynkin diagram | x3x3x3x | x3x3x3x *c3x | x3x3x3x3x *c3x | x3x3x3x3x3x *c3x | x3x3x3x3x3x3x *c3x | x3x...x3x3x *c3x |
| Acronym | gippid | gippit | gopam | gotanq | gupofy | omnitr. (n-4)2,1 |
| Vertex Count | 120 | 1920 | 51840 | 2903040 | 696729600 | ? |
| Facet Count wrt. type 1 | 5toe | 16gippid | 72gocad | 576gotaf | 17280guph | ? |
| Facet Count wrt. type 2 | 10hip | 16gippid | 27gippit | 56gopam | 240gotanq | ? |
| Facet Count wrt. type 3 | 10hip | 80shiddip | 216gippiddip | 756gippitip | 6720gopamp | ? |
| Facet Count wrt. type 4 | 5toe | 40tope | 720hahip | 4032hagippid | 60480hagippit | ? |
| Facet Count wrt. type 5 | 10tico | 216gippiddip | 2016gocadip | 241920toegippid | ? | |
| Facet Count wrt. type 6 | 27gippit | 10080hatope | 483840hagippiddip | ? | ||
| Facet Count wrt. type 7 | 126gocog | 69120gotafip | ? | |||
| Facet Count wrt. type 8 | 2160gotaz | ? | ||||
| Circumradius | sqrt(5) 2.236068 | sqrt(15) 3.872983 | sqrt(39) 6.244998 | sqrt(399)/2 9.987492 | sqrt(310) 17.606817 | ? |
| Inradius wrt. facet type 1 | sqrt(5/2) 1.581139 | sqrt(10) 3.162278 | 11/2 5.5 | sqrt(343)/2 9.260130 | 17 | ? |
| Inradius wrt. facet type 2 | sqrt(15)/2 1.936492 | sqrt(10) 3.162278 | sqrt(24) 4.898980 | sqrt(243)/2 7.794229 | 29/2 14.5 | ? |
| Inradius wrt. facet type 3 | sqrt(15)/2 1.936492 | sqrt(27/2) 3.674235 | sqrt(135)/2 5.809475 | 13/sqrt(2) 9.192388 | sqrt(1083)/2 16.454483 | ? |
| Inradius wrt. facet type 4 | sqrt(5/2) 1.581139 | 7/2 3.5 | sqrt(147)/2 6.062178 | sqrt(375)/2 9.682458 | sqrt(294) 17.146428 | ? |
| Inradius wrt. facet type 5 | sqrt(8) 2.828427 | sqrt(135)/2 5.809475 | sqrt(363)/2 9.526279 | sqrt(605/2) 17.392527 | ? | |
| Inradius wrt. facet type 6 | sqrt(24) 4.898980 | sqrt(96) 9.797959 | sqrt(1215)/2 17.428425 | ? | ||
| Inradius wrt. facet type 7 | 17/2 8.5 | sqrt(1183)/2 17.197384 | ? | |||
| Inradius wrt. facet type 8 | sqrt(529/2) 16.263456 | ? | ||||
| Volume | 125 sqrt(5)/4 69.877124 | ? | ? | ? | ? | ? |
| Surface | ? | ? | ? | ? | ? | ? |
| Dihedral angles types 1 - 2 | arccos[-sqrt(3/8)] 127.761244° | arccos(-3/5) 126.869898° | arccos[-sqrt(3/8)] 127.761244° | arccos[-sqrt(3/7)] 130.893395° | arccos(-3/4) 138.590378° | arccos[-3/sqrt(n(10-n))] |
| Dihedral angles types 1 - 3 | arccos[-sqrt(1/6)] 114.094843° | ? | ? | ? | ? | ? |
| Dihedral angles types 1 - 4 | arccos(-1/4) 104.477512° | arccos[-sqrt(2/5)] 129.231520° | ? | ? | ? | ? |
| Dihedral angles types 1 - 5 | arccos[-1/sqrt(5)] 116.565051° | ? | ? | ? | ? | |
| Dihedral angles types 1 - 6 | arccos[-sqrt(3/8)] 127.761244° | ? | ? | ? | ||
| Dihedral angles types 1 - 7 | arccos[-2/sqrt(7)] 139.106605° | ? | ? | |||
| Dihedral angles types 1 - 8 | arccos[-5/sqrt(32)] 152.114433° | ? | ||||
| Dihedral angles types 2 - 3 | arccos(-2/3) 131.810315° | ? | ? | ? | ? | ? |
| Dihedral angles types 2 - 4 | arccos(-1/4) 104.477512° | arccos[-sqrt(2/5)] 129.231520° | ? | ? | ? | ? |
| Dihedral angles types 2 - 5 | arccos[-1/sqrt(5)] 116.565051° | ? | ? | ? | ? | |
| Dihedral angles types 2 - 6 | 120° | ? | ? | ? | ||
| Dihedral angles types 2 - 7 | arccos[-1/sqrt(3)] 125.264390° | ? | ? | |||
| Dihedral angles types 2 - 8 | 135° | ? | ||||
| Dihedral angles types 3 - 4 | arccos[-sqrt(3/8)] 127.761244° | ? | ? | ? | ? | ? |
| Dihedral angles types 3 - 5 | ? | ? | ? | ? | ? | |
| Dihedral angles types 3 - 6 | ? | ? | ? | ? | ||
| Dihedral angles types 3 - 7 | ? | ? | ? | |||
| Dihedral angles types 3 - 8 | ? | ? | ||||
| Dihedral angles types 4 - 5 | 135° | ? | ? | ? | ? | |
| Dihedral angles types 4 - 6 | ? | ? | ? | ? | ||
| Dihedral angles types 4 - 7 | ? | ? | ? | |||
| Dihedral angles types 4 - 8 | ? | ? | ||||
| Dihedral angles types 5 - 6 | ? | ? | ? | ? | ||
| Dihedral angles types 5 - 7 | ? | ? | ? | |||
| Dihedral angles types 5 - 8 | ? | ? | ||||
| Dihedral angles types 6 - 7 | ? | ? | ? | |||
| Dihedral angles types 6 - 8 | ? | ? | ||||
| Dihedral angles types 7 - 8 | ? | ? |
The name of theUrsatopes derives from the acronym of the 3D sequence member,teddi (J63), being homonym to the toy-bear, or Latinized "urs". The simplexial ones are defined generally as thebistratic lace towersofx3xoo3ooo...ooo3ooo&#xt, i.e. the n-dimensional simplexial ursatope Un can be described astherectified simplex rSn-1 atop thef-scaledregular simplexf·Sn-1 atop the (unit) regular simplex Sn-1. All those ursatopes happen to beorbiformCRFs, i.e. are circumscribable, convex, and regular faced.
It could be mentioned here additionally that the simplexial ursatope Un generally is nothing but thevertex figure ofs3s4o3o...o3o, which for low dimensions is spherical, at rank 5 (i.e. 5 nodes) becomes aneuclidean tetracomb, and thereafter will belong tohyperbolic geometry. This then gets reflected too in the table below by the values of the circumradii of Un, which traverse unity at n=4.
Further thevertex figures of these polytopes could be described uniformely.At the lower 2 of its vertex types one hasox3oo...oo3oo&#f spike-like tall simplex pyramides,the top vertices however arexf xo...oo3oo&#x, i.e. simplex prism wedges, where the additionalwedge-edge has sizef and runs axis parallel to the base (simplex prism).
| Dimension | 2D | 3D | 4D | 5D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | ofx&#xt | ofx3xoo&#xt | ofx3xoo3ooo&#xt | ofx3xoo3ooo3ooo&#xt | ofx3xoo3ooo...ooo3ooo&#xt |
| Acronym | peg | teddi | tetu | penu | simpl. n-ursatope |
| Vertex Count top layer | 1 | 3 | 6 | 10 | n(n-1)/2 |
| Vertex Count medial layer | 2 | 3 | 4 | 5 | n |
| Vertex Count bottom layer | 2 | 3 | 4 | 5 | n |
| Facet Count top | 1trig | 1oct | 1rap | 1 | |
| Facet Count upper lacing | 2line | 3trig | 4tet | 5pen | n |
| Facet Count lower lacing | 2line | 3peg | 4teddi | 5tetu | n |
| Facet Count bottom | 1line | 1trig | 1tet | 1pen | 1 |
| Circumradius | sqrt[(5+sqrt(5))/10] 0.850651 | sqrt[(5+sqrt(5))/8] 0.951057 | 1 | sqrt[2+sqrt(5)]/2 1.029086 | sqrt[((29n-22)+(13n-10) sqrt(5)) / ((22n+6)+(10n+2) sqrt(5))] |
| Inradius wrt. top facet | sqrt[(7+3 sqrt(5))/24] 0.755761 | 1/sqrt(2) 0.707107 | sqrt[(5 sqrt(5)-2)/20] 0.677508 | ? | |
| Inradius wrt. upper lacing | sqrt[(5+2 sqrt(5))/20] 0.688191 | sqrt[(7+3 sqrt(5))/24] 0.755761 | sqrt(5/8) 0.790569 | sqrt[(1+3 sqrt(5))/12] 0.801468 | ? |
| Inradius wrt. lower lacing | sqrt[(5+2 sqrt(5))/20] 0.688191 | sqrt[(5+sqrt(5))/40] 0.425325 | [sqrt(5)-1]/4 0.309017 | sqrt[sqrt(5)-2]/2 0.242934 | ? |
| Inradius wrt. bottom facet | sqrt[(5+2 sqrt(5))/20] 0.688191 | sqrt[(7+3 sqrt(5))/24] 0.755761 | sqrt(5/8) 0.790569 | sqrt[(1+3 sqrt(5))/12] 0.801468 | ? |
| Volume | sqrt[25+10 sqrt(5)]/4 1.720477 | [15+7 sqrt(5)]/24 1.277186 | [28+13 sqrt(5)]/96 0.594468 | [11 sqrt(5 sqrt(5)-2)+2 sqrt(15+45 sqrt(5))+ +(140+65 sqrt(5)) sqrt(sqrt(5)-2)]/960 0.201536 | ? |
| Surface | 5 | [5 sqrt(3)+3 sqrt(25+10 sqrt(5))]/4 7.326496 | [30+9 sqrt(2)+14 sqrt(5)]/12 6.169406 | [70+41 sqrt(5)]/48 3.368308 | ? |
| Dihedral angles top - upper | 108° upper - upper | arccos(-sqrt(5)/3) 138.189685° | ? | ? | ? |
| Dihedral angles top - lower | ? | ? | ? | ||
| Dihedral angles lower - upper | 108° | arccos(-sqrt[(5-2 sqrt(5))/15]) 100.812317° | ? | ? | ? |
| Dihedral angles lower - lower | arccos(1/sqrt(5)) 63.434949° | ? | ? | ? | |
| Dihedral angles lower - bottom | 108° | arccos(-sqrt[(5-2 sqrt(5))/15]) 100.812317° | ? | ? | ? |
| Dimension | 6D | 7D | 8D | 9D | nD |
| Dynkin diagram | ofx3xoo3ooo3ooo3ooo&#xt | ofx3xoo3ooo3ooo3ooo3ooo&#xt | ofx3xoo3ooo3ooo3ooo3ooo3ooo&#xt | ofx3xoo3ooo3ooo3ooo3ooo3ooo3ooo&#xt | ofx3xoo3ooo...ooo3ooo&#xt |
| Acronym | hixu | hopu | ocu | enu | simpl. n-ursatope |
| Vertex Count top layer | 15 | 21 | 28 | 36 | n(n-1)/2 |
| Vertex Count medial layer | 6 | 7 | 8 | 9 | n |
| Vertex Count bottom layer | 6 | 7 | 8 | 9 | n |
| Facet Count top | 1rix | 1ril | 1roc | 1rene | 1 |
| Facet Count upper lacing | 6hix | 7hop | 8oca | 9ene | n |
| Facet Count lower lacing | 6penu | 7hixu | 8hopu | 9ocu | n |
| Facet Count bottom | 1hix | 1hop | 1oca | 1ene | 1 |
| Circumradius | sqrt[(13+5 sqrt(5))/22] 1.048383 | sqrt[(25+9 sqrt(5))/40] 1.062128 | sqrt[(20+7 sqrt(5))/31] 1.072418 | sqrt[(29+10 sqrt(5))/44] 1.080411 | sqrt[((29n-22)+(13n-10) sqrt(5)) / ((22n+6)+(10n+2) sqrt(5))] |
| Inradius wrt. top facet | sqrt[(15 sqrt(5)-5)/66] 0.657601 | sqrt[(63 sqrt(5)-25)/280] 0.643296 | sqrt[(28 sqrt(5)-13)/124] 0.632519 | sqrt[(90 sqrt(5)-47)/396] 0.624108 | ? |
| Inradius wrt. upper lacing | sqrt[(23+30 sqrt(5))/132] 0.826099 | sqrt[(55+63 sqrt(5))/280] 0.836387 | sqrt[(103+112 sqrt(5))/496] 0.844144 | sqrt[(85+90 sqrt(5))/396] 0.850202 | ? |
| Inradius wrt. lower lacing | sqrt[(4-sqrt(5))/44] 0.200223 | sqrt[(15-sqrt(5))/440] 0.170320 | sqrt[(25+sqrt(5))/1240] 0.148204 | sqrt[(19+2 sqrt(5))/1364] 0.131180 | ? |
| Inradius wrt. bottom facet | sqrt[(23+30 sqrt(5))/132] 0.826099 | sqrt[(55+63 sqrt(5))/280] 0.836387 | sqrt[(103+112 sqrt(5))/496] 0.844144 | sqrt[(85+90 sqrt(5))/396] 0.850202 | ? |
| Volume | ? | ? | ? | ? | ? |
| Surface | ? | ? | ? | ? | ? |
| Dihedral angles top - upper | ? | ? | ? | ? | ? |
| Dihedral angles top - lower | ? | ? | ? | ? | ? |
| Dihedral angles lower - upper | ? | ? | ? | ? | ? |
| Dihedral angles lower - lower | ? | ? | ? | ? | ? |
| Dihedral angles lower - bottom | ? | ? | ? | ? | ? |
The orthoplexialUrsatopes are defined generally as thebistratic lace towersofx3xoo3ooo...ooo3ooo4ooo&#xt, i.e. the n-dimensional orthoplexial ursatope oUn can be described astherectified orthoplex rOn-1 atop thef-scaledregular orthoplexf·On-1 atop the (unit) regular orthoplex On-1. Nearly all those ursatopes happen to beorbiformCRFs, i.e. are circumscribable, convex, and regular faced. Only the 3D representant shows up external q-edges;none the less it still remains circumscribable.
| Dimension | 3D | 4D | 5D | 6D | 7D | nD |
|---|---|---|---|---|---|---|
| Dynkin diagram | ofx4qoo&#xt(non-orbiform) | ofx3xoo4ooo&#xt | ofx3xoo3ooo4ooo&#xt | ofx3xoo3ooo3ooo4ooo&#xt | ofx3xoo3ooo3ooo3ooo4ooo&#xt | ofx3xoo3ooo...ooo4ooo&#xt |
| Acronym | -- | octu | hexu | tacu | gu | orthopl. n-ursatope |
| Vertex Count top layer | 4 | 12 | 24 | 40 | 60 | 2(n-1)(n-2) |
| Vertex Count medial layer | 4 | 6 | 8 | 10 | 12 | 2(n-1) |
| Vertex Count bottom layer | 4 | 6 | 8 | 10 | 12 | 2(n-1) |
| Facet Count top | 1q-square | 1co | 1ico | 1rat | 1rag | 1 |
| Facet Count upper lacing | 4oq&#x | 6squippy | 8octpy | 10hexpy | 12tacpy | 2(n-1) |
| Facet Count lower lacing | 4peg | 8teddi | 16tetu | 32penu | 64hixu | 2n-1 |
| Facet Count bottom | 1square | 1oct | 1hex | 1tac | 1gee | 1 |
| Circumradius | sqrt[3+sqrt(5)]/2 1.144123 | sqrt[3+sqrt(5)]/2 1.144123 | sqrt[3+sqrt(5)]/2 1.144123 | sqrt[3+sqrt(5)]/2 1.144123 | sqrt[3+sqrt(5)]/2 1.144123 | sqrt[3+sqrt(5)]/2 1.144123 |
| Inradius wrt. top facet | sqrt[sqrt(5)-1]/2 0.555893 | sqrt[sqrt(5)-1]/2 0.555893 | sqrt[sqrt(5)-1]/2 0.555893 | sqrt[sqrt(5)-1]/2 0.555893 | sqrt[sqrt(5)-1]/2 0.555893 | sqrt[sqrt(5)-1]/2 0.555893 |
| Inradius wrt. upper lacing | sqrt[1+sqrt(5)]/2 0.899454 | sqrt[1+sqrt(5)]/2 0.899454 | sqrt[1+sqrt(5)]/2 0.899454 | sqrt[1+sqrt(5)]/2 0.899454 | sqrt[1+sqrt(5)]/2 0.899454 | sqrt[1+sqrt(5)]/2 0.899454 |
| Inradius wrt. lower lacing | sqrt[(5+3 sqrt(5))/20] 0.765121 | sqrt[(1+sqrt(5))/8] 0.636010 | sqrt[sqrt(5)-1]/2 0.555893 | 1/2 0.5 | sqrt[(7+sqrt(5)/44] 0.458160 | sqrt[(29+13 sqrt(5)) / ((22n-16)+(10n-8)sqrt(5))] |
| Inradius wrt. bottom facet | sqrt[1+sqrt(5)]/2 0.899454 | sqrt[1+sqrt(5)]/2 0.899454 | sqrt[1+sqrt(5)]/2 0.899454 | sqrt[1+sqrt(5)]/2 0.899454 | sqrt[1+sqrt(5)]/2 0.899454 | sqrt[1+sqrt(5)]/2 0.899454 |
| Volume | ? | ? | ? | ? | ? | ? |
| Surface | ? | ? | ? | ? | ? | ? |
| Dihedral angles top - upper | ? | ? | ? | ? | ? | ? |
| Dihedral angles top - lower | ? | ? | ? | ? | ? | |
| Dihedral angles lower - upper | ? | ? | ? | ? | ? | ? |
| Dihedral angles lower - lower | ? | ? | ? | ? | ? | ? |
| Dihedral angles lower - bottom | ? | ? | ? | ? | ? | ? |
As such these polytopesoo3ox3oo...oo3oo&#x look just to be a mere similar concept to the pyramids on simplex base, which, for sure, as such are nothing but simplices of the next dimension themselves. However it happens that the demihypercube Dn, when seen as lace towerwith vertex first orientation, becomes generallyooo..-3-oxo..-3-ooo..-3-oox..-...-ooo..&#xt (n-1 node positions, n/2 or (n+1)/2 layers). Thence this very pyramid of consideration is nothing but the vertex pyramid thereof.
Below it is shown that the dihedral angle at the base decreases to zero with increasing dimension. This is what makes the possibilities to augment other polytopes with this component ever more likely, esp. the possibilities for higher dimensionalCRF would explode.
| Dimension | 3D | 4D | 5D | 6D | nD |
|---|---|---|---|---|---|
| Dynkin diagram | oo3ox&#x | oo3ox3oo&#x | oo3ox3oo3oo&#x | oo3ox3oo3oo&#x | oo3ox3oo...oo3oo&#x |
| Acronym | tet | octpy | rappy | rixpy | rect. n-simplex pyr. |
| Vertex Count | 1+3 | 1+6 | 1+10 | 1+15 | 1+n(n-1)/2 |
| Facet Count simpl. lacing | 3trig | 4tet | 5pen | 6hix | n |
| Facet Count other lacing | 4tet | 5octpy | 6rappy | n | |
| Facet Count base | 1trig | 1oct | 1rap | 1rix | 1 |
| Circumradius | sqrt(3/8) 0.612372 | 1/sqrt(2) 0.707107 | sqrt(5/8) 0.790569 | sqrt(3)/2 0.866025 | sqrt(n/8) |
| Inradius wrt. simpl. lacing | 1/sqrt(24) 0.204124 | 1/sqrt(8) 0.353553 | 3/sqrt(40) 0.474342 | 1/sqrt(3) 0.577350 | (n-2)/sqrt(8n) |
| Inradius wrt. other lacing | 1/sqrt(8) 0.353553 | 1/sqrt(8) 0.353553 | 1/sqrt(8) 0.353553 | ||
| Inradius wrt. base | 1/sqrt(24) 0.204124 | 0 | -1/sqrt(40) -0.158114 | -1/sqrt(12) -0.288675 | -(n-4)/sqrt(8n) |
| Volume | sqrt(2)/12 0.117851 | 1/12 0.833333 | 11 sqrt(2)/480 0.032409 | 13/1440 0.0090278 | (2n-1-n)/(n! sqrt(2n-2)) |
| Surface | sqrt(3) 1.732051 | sqrt(2) 1.414214 | ? | ? | ? |
| Dihedral angles simp. - other | arccos(1/3) 70.528779° (simp. - simp.) | 120° | arccos[-1/sqrt(5)] 116.565051° | arccos[-1/sqrt(6)] 114.094843° | arccos[-1/sqrt(n)] |
| Dihedral angles other - other | 90° | 90° | 90° | ||
| Dihedral angles simp. - base | arccos(1/3) 70.528779° | 60° | arccos(3/5) 53.130102° | arccos(2/3) 48.189685° | arccos[(n-2)/n] |
| Dihedral angles other - base | 60° | arccos[1/sqrt(5)] 63.434949° | arccos[1/sqrt(6)] 65.905157° | arccos[1/sqrt(n)] | |
| Height | sqrt(2/3) 0.816497 | 1/sqrt(2) 0.707107 | sqrt(2/5) 0.632456 | 1/sqrt(3) 0.577350 | sqrt(2/n) |
| Dimension | 7D | 8D | 9D | 10D | nD |
| Dynkin diagram | oo3ox3oo3oo3oo3oo | oo3ox3oo3oo3oo3oo3oo | oo3ox3oo3oo3oo3oo3oo3oo | oo3ox3oo3oo3oo3oo3oo3oo3oo | oo3ox3oo...oo3oo |
| Acronym | rilpy | rocpy | renepy | ? | rect. n-simplex pyr. |
| Vertex Count | 1+21 | 1+28 | 1+36 | 1+45 | 1+n(n-1)/2 |
| Facet Count simpl. lacing | 7hop | 8oca | 9ene | 10day | n |
| Facet Count other lacing | 7rixpy | 8rilpy | 9rocpy | 10renepy | n |
| Facet Count base | 1ril | 1roc | 1rene | 1reday | 1 |
| Circumradius | sqrt(7/8) 0.935414 | 1 | 3/sqrt(8) 1.060660 | sqrt(5)/2 1.118034 | sqrt(n/8) |
| Inradius wrt. simpl. lacing | 5/sqrt(56) 0.668153 | 3/4 0.75 | 7/sqrt(72) 0.824958 | 2/sqrt(5) 0.894427 | (n-2)/sqrt(8n) |
| Inradius wrt. other lacing | 1/sqrt(8) 0.353553 | 1/sqrt(8) 0.353553 | 1/sqrt(8) 0.353553 | 1/sqrt(8) 0.353553 | 1/sqrt(8) 0.353553 |
| Inradius wrt. base | -3/sqrt(56) -0.400892 | -1/2 -0.5 | -5/sqrt(72) -0.589256 | -6/sqrt(80) -0.670820 | -(n-4)/sqrt(8n) |
| Volume | 19 sqrt(2)/13440 0.0019993 | 1/2688 0.00037202 | 247 sqrt(2)/5806080 0.000060163 | 251/29030400 0.0000086461 | (2n-1-n)/(n! sqrt(2n-2)) |
| Surface | ? | ? | ? | ? | ? |
| Dihedral angles simp. - other | arccos[-1/sqrt(7)] 112.207654° | arccos[-1/sqrt(8)] 110.704811° | arccos(-1/3) 109.471221° | arccos[-1/sqrt(10)] 108.434949° | arccos[-1/sqrt(n)] |
| Dihedral angles other - other | 90° | 90° | 90° | 90° | 90° |
| Dihedral angles simp. - base | arccos(5/7) 44.415309° | arccos(3/4) 41.409622° | arccos(7/9) 38.942441° | arccos(4/5) 36.869898° | arccos[(n-2)/n] |
| Dihedral angles other - base | arccos[1/sqrt(7)] 67.792346° | arccos[1/sqrt(8)] 69.295189° | arccos(1/3) 70.528779° | arccos[1/sqrt(10)] 71.565051° | arccos[1/sqrt(n)] |
| Height | sqrt(2/7) 0.534522 | 1/2 0.5 | sqrt(2)/3 0.471405 | 1/sqrt(5) 0.447214 | sqrt(2/n) |
Volumes of duoprisms A×B are easily calculated as the product of the subdimensional volumes of A resp. of B.Thus plain prisms (of unit height, for sure) have the same numeric volume value, as the subdimensional volume of its base.
Vertex counts of duoprisms A×B likewise are given as the product of the vertex counts of A resp. of B.
This case results ineven dimensions only.
From the axial representation of one of the factors, i.e. of Sn,it becomes clear that Sn×Sn can well be representedas thesegmentotope of theregular simplex Snatop the simplex duoprism Sn×Sn-1.Thence, by means of thelace prism notation, Sn×Sn
x3o3o...o3o x3o3o...o3o (2n nodes) can be described as well asxx3oo3oo...oo3oo ox3oo...oo3oo&#x (2n-1 nodes).
It could be mentioned here additionally that the simplex duoprism Sn×Sn generally is nothing but thevertex figure of themid-rectified simplex mrS2n+1.
| Dimension | 2D | 4D | 6D | 8D | 10D | (2n)D |
|---|---|---|---|---|---|---|
| Dynkin diagram | x x | x3o x3o | x3o3o x3o3o | x3o3o3o x3o3o3o | x3o3o3o3o x3o3o3o3o | x3o...o3o x3o...o3o |
| Acronym | square | triddip | tetdip | pendip | hixdip | n-simplex duoprism |
| Vertex Count | 4 | 9 | 16 | 25 | 36 | (n+1)2 |
| Facet Count | 4line | 6trip | 8tratet | 10tetpen | 12penhix | 2(n+1) |
| Circumradius | 1/sqrt(2) 0.707107 | sqrt(2/3) 0.816497 | sqrt(3)/2 0.866025 | 2/sqrt(5) 0.894427 | sqrt(5/6) 0.912871 | sqrt[n/(n+1)] |
| Inradius | 1/2 0.5 | 1/sqrt(12) 0.288675 | 1/sqrt(24) 0.204124 | 1/sqrt(40) 0.158114 | 1/sqrt(60) 0.129099 | 1/sqrt[2n(n+1)] |
| Volume | 1 | 3/16 0.1875 | 1/72 0.013889 | 5/9216 0.00054253 | 1/76800 0.000013021 | (n+1)/[2n (n!)2] |
| Surface | 4 | sqrt(27)/2 2.598076 | 1/sqrt(6) 0.408248 | 5 sqrt(10)/576 0.027450 | 1/[256 sqrt(15)] 0.0010086 | sqrt[(n+1)3/(n 22n-3 ((n-1)!)4)] |
| Dihedral angles at Sn-1×Sn-1 | 90° | 90° | 90° | 90° | 90° | 90° |
| Dihedral angles at Sn×Sn-2 | 60° | arccos(1/3) 70.528779 | arccos(1/4) 75.522488 | arccos(1/5) 78.463041 | arccos(1/n) |
© 2004-2025 | top of page |