Movatterモバイル変換


[0]ホーム

URL:


Acronymtuta (alt.: pabdirit, tutcup, tutaltut), tut || inv tut, K-4.55
Nametruncated tetrahedral alterprism,
truncated tetrahedral cupoliprism,
runcic snub cubic hosochoron,
truncated tetrahedron atop invertedtruncated tetrahedron,
truncated tetrahedron atop alternatetruncated tetrahedron,
tetrahedrally medial part ofrectified tesseract,
parabidiminishedrectified tesseract
Segmentochoron display /
VRML
Cross sections
©
Circumradiussqrt(3/2) = 1.224745
Lace city
in approx. ASCII-art
    x3x o3x             u3o o3u             x3o x3x
Coordinates(3, 1, 1, 1)/sqrt(8)       all permutations in first 3 coords, even changes of sign in all coords
General of army(is itself convex)
Colonel of regiment(is itself locally convex)
Dihedral angles
Face vector24, 60, 52, 16
Confer
uniform relative:
rit  
segmentochora:
tet || tut  
relatedCRFs:
mibdirit  
general polytopal classes:
scaliform  segmentochora  lace simplices  
External
links
hedrondude  wikipedia  polytopewiki  quickfur  

This polychoron also can be derived as equatorial stratos ofrit, if that one will be considered with respect to an axialtetrahedral symmetry.

Klitzing in automn of 2000 both found this very polychoron and also obtained therefrom the precise concept of some weakening of uniformity, which shortly thereafter became known asscaliformity. Thus tutcup truely was the first known scaliform polytope!


Incidence matrix according toDynkin symbol

xo3xx3ox&#x   → height = 1/sqrt(2) = 0.707107(tut|| invtut)o.3o.3o.    | 12  * | 1  2  2  0 0 | 2 1  2  2  1 0 0 | 1 2 1 1 0.o3.o3.o    |  * 12 | 0  0  2  2 1 | 0 0  1  2  2 1 2 | 0 1 1 2 1------------+-------+--------------+------------------+----------x. .. ..    |  2  0 | 6  *  *  * * | 2 0  2  0  0 0 0 | 1 2 1 0 0.. x. ..    |  2  0 | * 12  *  * * | 1 1  0  1  0 0 0 | 1 1 0 0 0oo3oo3oo&#x |  1  1 | *  * 24  * * | 0 0  1  1  1 0 0 | 0 1 1 1 0.. .x ..    |  0  2 | *  *  * 12 * | 0 0  0  1  0 1 1 | 0 1 0 1 1.. .. .x    |  0  2 | *  *  *  * 6 | 0 0  0  0  2 0 2 | 0 0 1 2 1------------+-------+--------------+------------------+----------x.3x. ..&#x |  6  0 | 3  3  0  0 0 | 4 *  *  *  * * * | 1 1 0 0 0.. x.3o.    |  3  0 | 0  3  0  0 0 | * 4  *  *  * * * | 1 0 0 1 0xo .. ..&#x |  2  1 | 1  0  2  0 0 | * * 12  *  * * * | 0 1 1 0 0.. xx ..&#x |  2  2 | 0  1  2  1 0 | * *  * 12  * * * | 0 1 0 1 0.. .. ox&#x |  1  2 | 0  0  2  0 1 | * *  *  * 12 * * | 0 0 1 1 0.o3.x ..    |  0  3 | 0  0  0  3 0 | * *  *  *  * 4 * | 0 1 0 0 1.. .x3.x&#x |  0  6 | 0  0  0  3 3 | * *  *  *  * * 4 | 0 0 0 1 1------------+-------+--------------+------------------+----------x.3x.3o. 12  0 | 6 12  0  0 0 | 4 4  0  0  0 0 0 |1 * * * *xo3xx ..&#x  6  3 | 3  3  6  3 0 | 1 0  3  3  0 1 0 | * 4 * * *xo .. ox&#x  2  2 | 1  0  4  0 1 | 0 0  2  0  2 0 0 | * * 6 * *.. xx3ox&#x  3  6 | 0  3  6  3 3 | 0 1  0  3  3 0 1 | * * * 4 *.o3.x3.x  0 12 | 0  0  0 12 6 | 0 0  0  0  0 4 4 | * * * *1
oro.3o.3o.    & | 24 |  1  2  2 | 2 1  3  2 | 1 3 1--------------+----+----------+-----------+------x. .. ..    & |  2 | 12  *  * | 0 0  2  0 | 1 2 1.. x. ..    & |  2 |  * 24  * | 1 1  0  1 | 1 2 0oo3oo3oo&#x   |  2 |  *  * 24 | 0 0  2  1 | 0 2 1--------------+----+----------+-----------+------x.3x. ..&#x & |  6 |  3  3  0 | 8 *  *  * | 1 1 0.. x.3o.    & |  3 |  0  3  0 | * 8  *  * | 1 1 0xo .. ..&#x & |  3 |  1  0  2 | * * 24  * | 0 1 1.. xx ..&#x   |  4 |  0  2  2 | * *  * 12 | 0 2 0--------------+----+----------+-----------+------x.3x.3o.    & 12 |  6 12  0 | 4 4  0  0 |2 * *xo3xx ..&#x &  9 |  3  6  6 | 3 1  3  3 | * 8 *xo .. ox&#x  4 |  2  0  4 | 0 0  4  0 | * * 6

s4o3x2sdemi( . . . . ) | 24 |  2  1  2 | 1  2 2  3 | 1 1 3----------------+----+----------+-----------+------demi( . . x . ) |  2 | 24  *  * | 1  1 1  0 | 1 0 2      s4o . .   |  2 |  * 12  * | 0  0 2  2 | 1 1 2      s . 2 s   |  2 |  *  * 24 | 0  1 0  2 | 0 1 2----------------+----+----------+-----------+------demi( . o3x . ) |  3 |  3  0  0 |8  * *  * | 1 0 1      s 2 x2s   |  4 |  2  0  2 | * 12 *  * | 0 0 2sefa( s4o3x . ) |  6 |  3  3  0 | *  * 8  * | 1 0 1sefa( s4o 2 s ) |  3 |  0  1  2 | *  * * 24 | 0 1 1----------------+----+----------+-----------+------      s4o3x . 12 | 12  6  0 | 4  0 4  0 | 2 * *      s4o 2 s  4 |  0  2  4 | 0  0 0  4 | * 6 *sefa( s4o3x2s )  9 |  6  3  6 | 1  3 1  3 | * * 8starting figure:x4o3x x

© 2004-2025
top of page

[8]ページ先頭

©2009-2025 Movatter.jp