| Acronym | ... |
| Name | s3s4o3o, mere hemiation oftruncated icositetrachoron, snub rhombatohexadecachoron |
| Circumradius | sqrt(7) = 2.645751 |
| Face vector | 96, 432, 480, 144 |
| Confer |
This polychoron is obtained as mere alternation oftico.However it is possible to resize all edges to unit sizes again. That variant then is well-known assadi and happens to be a special diminishing ofex.
The name snub rhombatohexadecachoron esp. refers to the generals3s3s4o variant.
Incidence matrix according toDynkin symbol
s3s4o3odemi( . . . . ) |96 | 3 6 | 3 9 3 | 3 1 4----------------+----+---------+-----------+--------- . s4o . | 2 | 144 * | 0 2 2 | 1 1 2 qsefa( s3s . . ) | 2 | * 288 | 1 2 0 | 2 0 1 h----------------+----+---------+-----------+--------- s3s . .♦ 3 | 0 3 | 96 * * | 2 0 0 h3osefa( s3s4o . ) | 3 | 1 2 | * 288 * | 1 0 1 oq&#hsefa( . s4o3o ) | 3 | 3 0 | * * 96 | 0 1 1 q3o----------------+----+---------+-----------+--------- s3s4o . | 12 | 6 24 | 8 12 0 | 24 * *snit . s4o3o | 4 | 6 0 | 0 0 4 | * 24 * q-tetsefa( s3s4o3o ) | 4 | 3 3 | 0 3 1 | * * 96 oq3oo&#h (tet variant)starting figure:x3x4o3o
s3s3s4odemi( . . . . ) |96 | 2 1 2 4 | 1 2 6 3 3 | 2 1 1 4----------------+----+--------------+-----------------+----------- s 2 s . | 2 | 96 * * * | 0 0 2 2 0 | 1 1 0 2 q . . s4o | 2 | * 48 * * | 0 0 0 2 2 | 0 1 1 2 qsefa( s3s . . ) | 2 | * * 96 * | 1 0 2 0 0 | 2 0 0 1 hsefa( . s3s . ) | 2 | * * * 192 | 0 1 1 0 1 | 1 0 1 1 h----------------+----+--------------+-----------------+----------- s3s . .♦ 3 | 0 0 3 0 | 32 * * * * | 2 0 0 0 h3o . s3s .♦ 3 | 0 0 0 3 | * 64 * * * | 1 0 1 0 h3osefa( s3s3s . ) | 3 | 1 0 1 1 | * * 192 * * | 1 0 0 1 oq&#hsefa( s 2 s4o ) | 3 | 2 1 0 0 | * * * 96 * | 0 1 0 1 q3osefa( . s3s4o ) | 3 | 0 1 0 2 | * * * * 96 | 0 0 1 1 oq&#h----------------+----+--------------+-----------------+----------- s3s3s . | 12 | 6 0 12 12 | 4 4 12 0 0 | 16 * * *snit s 2 s4o | 4 | 4 2 0 0 | 0 0 0 4 0 | * 24 * * q-tet . s3s4o | 12 | 0 6 0 24 | 0 8 0 0 12 | * * 8 *snitsefa( s3s3s4o ) | 4 | 2 1 1 2 | 0 0 2 1 1 | * * * 96 oq3oo&#h (tet variant)starting figure:x3x3x4o
s3s3s *b3sdemi( . . . . ) |96 | 1 1 1 2 2 2 | 1 1 1 3 3 3 3 | 1 1 1 1 4-------------------+----+-------------------+----------------------+------------ s 2 s . | 2 | 48 * * * * * | 0 0 0 2 0 2 0 | 1 0 1 0 2 q s 2 . s | 2 | * 48 * * * * | 0 0 0 0 2 2 0 | 0 1 1 0 2 q . 2 s s | 2 | * * 48 * * * | 0 0 0 0 0 2 2 | 0 0 1 1 2 qsefa( s3s . . ) | 2 | * * * 96 * * | 1 0 0 1 1 0 0 | 1 1 0 0 1 hsefa( . s3s . ) | 2 | * * * * 96 * | 0 1 0 1 0 0 1 | 1 0 0 1 1 hsefa( . s . *b3s ) | 2 | * * * * * 96 | 0 0 1 0 1 0 1 | 0 1 0 1 1 h-------------------+----+-------------------+----------------------+------------ s3s . .♦ 3 | 0 0 0 3 0 0 | 32 * * * * * * | 1 1 0 0 0 h3o . s3s .♦ 3 | 0 0 0 0 3 0 | * 32 * * * * * | 1 0 0 1 0 h3o . s . *b3s♦ 3 | 0 0 0 0 0 3 | * * 32 * * * * | 0 1 0 1 0 h3osefa( s3s3s . ) | 3 | 1 0 0 1 1 0 | * * * 96 * * * | 1 0 0 0 1 oq&#hsefa( s3s . *b3s ) | 3 | 0 1 0 1 0 1 | * * * * 96 * * | 0 1 0 0 1 oq&#hsefa( s 2 s 2 s ) | 3 | 1 1 1 0 0 0 | * * * * * 96 * | 0 0 1 0 1 q3osefa( . s3s *b3s ) | 3 | 0 0 1 0 1 1 | * * * * * * 96 | 0 0 0 1 1 oq&#h-------------------+----+-------------------+----------------------+------------ s3s3s . | 12 | 6 0 0 12 12 0 | 4 4 0 12 0 0 0 | 8 * * * *snit s3s . *b3s | 12 | 0 6 0 12 0 12 | 4 0 4 0 12 0 0 | * 8 * * *snit s 2 s 2 s | 4 | 2 2 2 0 0 0 | 0 0 0 0 0 4 0 | * * 24 * * q-tet . s3s *b3s | 12 | 0 0 6 0 12 12 | 0 4 4 0 0 0 12 | * * * 8 *snitsefa( s3s3s *b3s ) | 4 | 1 1 1 1 1 1 | 0 0 0 1 1 1 1 | * * * * 96 oq3oo&#h (tet variant)starting figure:x3x3x *b3x
© 2004-2025 | top of page |