| Acronym | pex thex |
| Name | partially (mono-)expandedthex |
| Circumradius | ... |
| Lace city in approx. ASCII-art | o4o o4x o4x o4o o4o o4u o4u o4o o4x o4u q4x q4x o4u o4x o4o o4u o4u o4o o4o o4x o4x o4o |
| Dihedral angles | |
| Face vector | 72, 180, 140, 32 |
| Confer |
|
Incidence matrix according toDynkin symbol
xuxxux3ooxxoo4oooooo&#xt → all but central height = 1/sqrt(2) = 0.707107 central height = 1(oct|| pseudo u-oct|| pseudotoe|| pseudotoe|| pseudo u-oct||oct)o.....3o.....4o..... & | 12 * * | 4 1 0 0 0 0 | 4 4 0 0 0 0 | 1 4 0 0.o....3.o....4.o.... & | * 12 * | 0 1 4 0 0 0 | 0 4 4 0 0 0 | 0 4 1 0..o...3..o...4..o... & | * * 48 | 0 0 1 1 2 1 | 0 1 2 2 1 2 | 0 2 1 2----------------------------+----------+-------------------+-------------------+---------x..... ...... ...... & | 2 0 0 | 24 * * * * * | 2 1 0 0 0 0 | 1 2 0 0oo....3oo....4oo....&#x & | 1 1 0 | * 12 * * * * | 0 4 0 0 0 0 | 0 4 0 0.oo...3.oo...4.oo...&#x & | 0 1 1 | * * 48 * * * | 0 1 2 0 0 0 | 0 2 1 0..x... ...... ...... & | 0 0 2 | * * * 24 * * | 0 1 0 2 0 0 | 0 2 0 2...... ..x... ...... & | 0 0 2 | * * * * 48 * | 0 0 1 1 0 1 | 0 1 1 1..oo..3..oo..4..oo..&#x | 0 0 2 | * * * * * 24 | 0 0 0 0 1 2 | 0 0 1 2----------------------------+----------+-------------------+-------------------+---------x.....3o..... ...... & | 3 0 0 | 3 0 0 0 0 0 | 16 * * * * * | 1 1 0 0xux... ...... ......&#xt & | 2 2 2 | 1 2 2 1 0 0 | * 24 * * * * | 0 2 0 0...... .ox... ......&#x & | 0 1 2 | 0 0 2 0 1 0 | * * 48 * * * | 0 1 1 0..x...3..x... ...... & | 0 0 6 | 0 0 0 3 3 0 | * * * 16 * * | 0 1 0 1..xx.. ...... ......&#x | 0 0 4 | 0 0 0 2 0 2 | * * * * 12 * | 0 0 0 2...... ..xx.. ......&#x | 0 0 4 | 0 0 0 0 2 2 | * * * * * 24 | 0 0 1 1----------------------------+----------+-------------------+-------------------+---------x.....3o.....4o..... &♦ 6 0 0 | 12 0 0 0 0 0 | 8 0 0 0 0 0 |2 * * *xux...3oox... ......&#xt &♦ 3 3 6 | 3 3 6 3 3 0 | 1 3 3 1 0 0 | * 16 * *...... .oxxo.4.oooo.&#xt♦ 0 2 8 | 0 0 8 0 8 4 | 0 0 8 0 0 4 | * * 6 *..xx..3..xx.. ......&#x♦ 0 0 12 | 0 0 0 6 6 6 | 0 0 0 2 3 3 | * * * 8
Xwx xux3oox4ooo&#zxt → where: X = w+q = x+2qo.. o..3o..4o.. | 12 * * | 4 1 0 0 0 0 | 4 4 0 0 0 0 | 1 4 0 0.o. .o.3.o.4.o. | * 12 * | 0 1 4 0 0 0 | 0 4 4 0 0 0 | 0 4 1 0..o ..o3..o4..o | * * 48 | 0 0 1 1 1 2 | 0 1 2 1 2 2 | 0 2 1 2--------------------+----------+-------------------+-------------------+---------... x.. ... ... | 2 0 0 | 24 * * * * * | 2 1 0 0 0 0 | 1 2 0 0oo. oo.3oo.4oo.&#x | 1 1 0 | * 12 * * * * | 0 4 0 0 0 0 | 0 4 0 0.oo .oo3.oo4.oo&#x | 0 1 1 | * * 48 * * * | 0 1 2 0 0 0 | 0 2 1 0..x ... ... ... | 0 0 2 | * * * 24 * * | 0 0 0 1 2 0 | 0 0 1 2... ..x ... ... | 0 0 2 | * * * * 24 * | 0 1 0 0 0 2 | 0 2 0 2... ... ..x ... | 0 0 2 | * * * * * 48 | 0 0 1 0 1 1 | 0 1 1 1--------------------+----------+-------------------+-------------------+---------... x..3o.. ... | 3 0 0 | 3 0 0 0 0 0 | 16 * * * * * | 1 1 0 0... xux ... ...&#xt | 2 2 2 | 1 2 2 0 1 0 | * 24 * * * * | 0 2 0 0... ... .ox ...&#x | 0 1 2 | 0 0 2 0 0 1 | * * 48 * * * | 0 1 1 0..x ..x ... ... | 0 0 4 | 0 0 0 2 2 0 | * * * 12 * * | 0 0 0 2..x ... ..x ... | 0 0 4 | 0 0 0 2 0 2 | * * * * 24 * | 0 0 1 1... ..x3..x ... | 0 0 6 | 0 0 0 0 3 3 | * * * * * 16 | 0 1 0 1--------------------+----------+-------------------+-------------------+---------... x..3o..4o..♦ 6 0 0 | 12 0 0 0 0 0 | 8 0 0 0 0 0 | 2 * * *... xux3oox ...&#xt♦ 3 3 6 | 3 3 6 0 3 3 | 1 3 3 0 0 1 | * 16 * *.wx ... .ox4.oo&#zx♦ 0 2 8 | 0 0 8 4 0 8 | 0 0 8 0 4 0 | * * 6 *..x ..x3..x ...♦ 0 0 12 | 0 0 0 6 6 6 | 0 0 0 3 3 2 | * * * 8
© 2004-2025 | top of page |