| Acronym | n/d-pyp |
| Name | n/d-pyramidal prism, line ||n/d-prism |
| Segmentochoron display /VRML |
|
| Circumradius | sqrt[1/4+1/(4-1/sin2[π d/n])] |
| Confer |
|
| Face vector | 2n+2, 5n+1, 4n+2, n+3 |
| Especially | tepe (n=3, d=1) squippyp (n=4, d=1) peppyp (n=5, d=1) stappyp (n=5, d=2) hippyp (n=6, d=1) |
The height formula given below shows that only2 < n/d < 6 is possible. The maximal height would be obtained atn/d = 2 with upright latteral triangles but then degenerate base,the other extremal valuen/d = 6 would generate a height of zero.
Incidence matrix according toDynkin symbol
xx ox-n/d-oo&#x (2<n/d<6) → height = sqrt(1-[1/4 *sin^2(π d/n)])(line||{n/d}-p)o. o.-n/d-o. | 2 * | 1 n 0 0 | n n 0 0 | n 1 0.o .o-n/d-.o | * 2n | 0 1 1 2 | 1 2 2 1 | 2 1 1----------------+------+-----------+----------+------x. .. .. | 2 0 |1 * * * | n 0 0 0 | n 0 0oo oo-n/d-oo&#x | 1 1 | * 2n * * | 1 2 0 0 | 2 1 0.x .. .. | 0 2 | * * n * | 1 0 2 0 | 2 0 1.. .x .. | 0 2 | * * * 2n | 0 1 1 1 | 1 1 1----------------+------+-----------+----------+------xx .. ..&#x | 2 2 | 1 2 1 0 | n * * * | 2 0 0.. ox ..&#x | 1 2 | 0 2 0 1 | * 2n * * | 1 1 0.x .x .. | 0 4 | 0 0 2 2 | * * n * | 1 0 1.. .x-n/d-.o | 0 n | 0 0 0 n | * * * 2 | 0 1 1----------------+------+-----------+----------+------xx ox ..&#x♦ 2 4 | 1 4 2 2 | 2 2 1 0 | n * *.. ox-n/d-oo&#x♦ 1 n | 0 n 0 n | 0 n 0 1 | * 2 *.x .x-n/d-.o♦ 0 2n | 0 0 n 2n | 0 0 n 2 | * *1{n/d}-py||{n/d}-py (2<n/d<6) → height = 1 1 * * * | n 1 0 0 0 0 | n n 0 0 0 0 | 1 n 0 0 top-tip * n * * | 1 0 2 1 0 0 | 2 1 1 0 0 0 | 1 2 1 0 top-base * * 1 * | 0 1 0 0 n 0 | 0 n 0 0 n 0 | 0 n 0 1 bottom-tip * * * n | 0 0 0 1 1 2 | 0 1 0 2 2 1 | 0 2 1 1 bottom-base----------+-------------+-------------+-------- 1 1 0 0 | n * * * * * | 2 1 0 0 0 0 | 1 2 0 0 1 0 1 0 | * 1 * * * * | 0 n 0 0 0 0 | 0 n 0 0 0 2 0 0 | * * n * * * | 1 0 1 1 0 0 | 1 1 1 0 0 1 0 1 | * * * n * * | 0 1 0 2 0 0 | 0 2 1 0 0 0 1 1 | * * * * n * | 0 1 0 0 2 0 | 0 2 0 1 0 0 0 2 | * * * * * n | 0 0 0 1 1 1 | 0 1 1 1----------+-------------+-------------+-------- 1 2 0 0 | 2 0 1 0 0 0 | n * * * * * | 1 1 0 0 1 1 1 1 | 1 1 0 1 1 0 | * n * * * * | 0 2 0 0 0 n 0 0 | 0 0 n 0 0 0 | * * 1 * * * | 1 0 1 0 0 2 0 2 | 0 0 1 2 0 1 | * * * n * * | 0 1 1 0 0 0 1 2 | 0 0 0 0 2 1 | * * * * n * | 0 1 0 1 0 0 0 n | 0 0 0 0 0 n | * * * * * 1 | 0 0 1 1----------+-------------+-------------+--------♦ 1 n 0 0 | n 0 n 0 0 0 | n 0 1 0 0 0 |1 * * *♦ 1 2 1 2 | 2 1 1 2 2 1 | 1 2 0 1 1 0 | * n * *♦ 0 n 0 n | 0 0 n n 0 n | 0 0 1 n 0 1 | * * 1 *♦ 0 0 1 n | 0 0 0 0 n n | 0 0 0 0 n 1 | * * *1oxxo-n/d-oooo&#xr (2<n/d<6) → height(1,2) = height(3,4) = sqrt(1-[1/4 *sin^2(π/n)]) height(1,4) = height(2,3) = 1( (pt|| {n/d})|| (pt|| {n/d}) )o...-n/d-o... |1 * * * | n 1 0 0 0 0 | n n 0 0 0 0 | 1 n 0 0.o..-n/d-.o.. | * n * * | 1 0 2 1 0 0 | 2 1 1 2 0 0 | 1 2 1 0..o.-n/d-..o. | * * n * | 0 0 0 1 2 1 | 0 1 0 2 1 2 | 0 2 1 1...o-n/d-...o | * * *1 | 0 1 0 0 0 n | 0 n 0 0 0 n | 0 n 0 1------------------+---------+-------------+-------------+--------oo..-n/d-oo..&#x | 1 1 0 0 | n * * * * * | 2 1 0 0 0 0 | 1 2 0 0o..o-n/d-o..o&#x | 1 0 0 1 | * 1 * * * * | 0 n 0 0 0 0 | 0 n 0 0.x.. .... | 0 2 0 0 | * * n * * * | 1 0 1 1 0 0 | 1 1 1 0.oo.-n/d-.oo.&#x | 0 1 1 0 | * * * n * * | 0 1 0 2 0 0 | 0 2 1 0..x. .... | 0 0 2 0 | * * * * n * | 0 0 0 1 1 1 | 0 1 1 1..oo-n/d-..oo&#x | 0 0 1 1 | * * * * * n | 0 1 0 0 0 2 | 0 2 0 1------------------+---------+-------------+-------------+--------ox.. ....&#x | 1 2 0 0 | 2 0 1 0 0 0 | n * * * * * | 1 1 0 0oooo-n/d-oooo&#xr | 1 1 1 1 | 1 1 0 1 0 1 | * n * * * * | 0 2 0 0.x..-n/d-.o.. | 0 n 0 0 | 0 0 n 0 0 0 | * *1 * * * | 1 0 1 0.xx. ....&#x | 0 2 2 0 | 0 0 1 2 1 0 | * * * n * * | 0 1 1 0..x.-n/d-..o. | 0 0 n 0 | 0 0 0 0 n 0 | * * * *1 * | 0 0 1 1..xo ....&#x | 0 0 2 1 | 0 0 0 0 1 2 | * * * * * n | 0 1 0 1------------------+---------+-------------+-------------+--------ox..-n/d-oo..&#x♦ 1 n 0 0 | n 0 n 0 0 0 | n 0 1 0 0 0 | 1 * * *oxxo ....&#xr♦ 1 2 2 1 | 2 1 1 2 1 2 | 1 2 0 1 0 1 | * n * *.xx.-n/d-.oo.&#x♦ 0 n n 0 | 0 0 n n n 0 | 0 0 1 n 1 0 | * * 1 *..xo-n/d-..oo&#x♦ 0 0 n 1 | 0 0 0 0 n n | 0 0 0 0 1 n | * * * 1
o(xo)x-n/d-o(oo)o&#xt (2<n/d<6)(pt|| ({n/d}|| pt)|| para {n/d})o(..).-n/d-o(..). |1 * * * | n 1 0 0 0 0 | n n 0 0 0 0 | 1 n 0 0.(o.).-n/d-.(o.). | * n * * | 1 0 2 1 0 0 | 2 1 1 2 0 0 | 1 2 1 0.(.o).-n/d-.(.o). | * *1 * | 0 1 0 0 n 0 | 0 n 0 0 n 0 | 0 n 0 1.(..)o-n/d-.(..)o | * * * n | 0 0 0 1 1 2 | 0 1 0 2 2 1 | 0 2 1 1----------------------+---------+-------------+-------------+--------o(o.).-n/d-o(o.).&#x | 1 1 0 0 | n * * * * * | 2 1 0 0 0 0 | 1 2 0 0o(.o).-n/d-o(.o).&#x | 1 0 1 0 | * 1 * * * * | 0 n 0 0 0 0 | 0 n 0 0.(x.). .(..). | 0 2 0 0 | * * n * * * | 1 0 1 1 0 0 | 1 1 1 0.(o.)o-n/d-.(o.)o&#x | 0 1 0 1 | * * * n * * | 0 1 0 2 0 0 | 0 2 1 0.(.o)o-n/d-.(.o)o&#x | 0 0 1 1 | * * * * n * | 0 1 0 0 2 0 | 0 2 0 1.(..)x .(..). | 0 0 0 2 | * * * * * n | 0 0 0 1 1 1 | 0 1 1 1----------------------+---------+-------------+-------------+--------o(x.). .(..).&#x | 1 2 0 0 | 2 0 1 0 0 0 | n * * * * * | 1 1 0 0o(oo)o-n/d-o(oo)o&#xt | 1 1 1 1 | 1 1 0 1 1 0 | * n * * * * | 0 2 0 0.(x.).-n/d-.(o.). | 0 n 0 0 | 0 0 n 0 0 0 | * *1 * * * | 1 0 1 0.(x.)x .(..).&#x | 0 2 0 2 | 0 0 1 2 0 1 | * * * n * * | 0 1 1 0.(.o)x .(..).&#x | 0 0 1 2 | 0 0 0 0 2 1 | * * * * n * | 0 1 0 1.(..)x-n/d-.(..)o | 0 0 0 n | 0 0 0 0 0 n | * * * * *1 | 0 0 1 1----------------------+---------+-------------+-------------+--------o(x.).-n/d-o(o.).&#x♦ 1 n 0 0 | n 0 n 0 0 0 | n 0 1 0 0 0 | 1 * * *o(xo)x .(..).&#xt♦ 1 2 1 2 | 2 1 1 2 2 1 | 1 2 0 1 1 0 | * n * *.(x.)x-n/d-.(o.)o&#x♦ 0 n 0 n | 0 0 n n 0 n | 0 0 1 n 0 1 | * * 1 *.(.o)x-n/d-.(.o)o&#x♦ 0 0 1 n | 0 0 0 0 n n | 0 0 0 0 n 1 | * * * 1
© 2004-2025 | top of page |