| Acronym | n,oct-dippip |
| Name | n-gon - octahedron duoprismatic prism |
| Face vector | 12n, 42n, 58n+12, 38n+30, 11n+28, n+10 |
| Especially | trope (n=3) octcube (n=4) |
| Confer |
|
Incidence matrix according toDynkin symbol
x xno x3o4o (n>2). . . . . . | 12n | 1 2 4 | 2 4 1 8 4 | 1 8 4 4 8 1 | 4 8 1 4 2 | 4 2 1------------+-----+------------+-------------------+--------------------+---------------+------x . . . . . | 2 | 6n * * | 2 4 0 0 0 | 1 8 4 0 0 0 | 4 8 1 0 0 | 4 2 0. x . . . . | 2 | * 12n * | 1 0 1 4 0 | 1 4 0 4 4 0 | 4 4 0 4 1 | 4 1 1. . . x . . | 2 | * * 24n | 0 1 0 2 2 | 0 2 2 1 4 1 | 1 4 1 2 2 | 2 2 1------------+-----+------------+-------------------+--------------------+---------------+------x x . . . . | 4 | 2 2 0 | 6n * * * * | 1 4 0 0 0 0 | 4 4 0 0 0 | 4 1 0x . . x . . | 4 | 2 0 2 | * 12n * * * | 0 2 2 0 0 0 | 1 4 1 0 0 | 2 2 0. xno . . . | n | 0 n 0 | * * 12 * * | 1 0 0 4 0 0 | 4 0 0 4 0 | 4 0 1. x . x . . | 4 | 0 2 2 | * * * 24n * | 0 1 0 1 2 0 | 1 2 0 2 1 | 2 1 1. . . x3o . | 3 | 0 0 3 | * * * * 16n | 0 0 1 0 2 1 | 0 2 1 1 2 | 1 2 1------------+-----+------------+-------------------+--------------------+---------------+------x xno . . .♦ 2n | n 2n 0 | n 0 2 0 0 | 6 * * * * * | 4 0 0 0 0 | 4 0 0x x . x . .♦ 8 | 4 4 4 | 2 2 0 2 0 | * 12n * * * * | 1 2 0 0 0 | 2 1 0x . . x3o .♦ 6 | 3 0 6 | 0 3 0 0 2 | * * 8n * * * | 0 2 1 0 0 | 1 2 0. xno x . .♦ 2n | 0 2n n | 0 0 2 n 0 | * * * 24 * * | 1 0 0 2 0 | 2 0 1. x . x3o .♦ 6 | 0 3 6 | 0 0 0 3 2 | * * * * 16n * | 0 1 0 1 1 | 1 1 1. . . x3o4o♦ 6 | 0 0 12 | 0 0 0 0 8 | * * * * * 2n | 0 0 1 0 2 | 0 2 1------------+-----+------------+-------------------+--------------------+---------------+------x xno x . .♦ 4n | 2n 4n 2n | 2n n 4 2n 0 | 2 n 0 2 0 0 | 12 * * * * | 2 0 0x x . x3o .♦ 12 | 6 6 12 | 3 6 0 6 4 | 0 3 2 0 2 0 | * 8n * * * | 1 1 0x . . x3o4o♦ 12 | 6 0 24 | 0 12 0 0 16 | 0 0 8 0 0 2 | * * n * * | 0 2 0. xno x3o .♦ 3n | 0 3n 3n | 0 0 3 3n n | 0 0 0 3 n 0 | * * * 16 * | 1 0 1. x . x3o4o♦ 12 | 0 6 24 | 0 0 0 12 16 | 0 0 0 0 8 2 | * * * * 2n | 0 1 1------------+-----+------------+-------------------+--------------------+---------------+------x xno x3o .♦ 6n | 3n 6n 6n | 3n 3n 6 6n 2n | 3 3n n 6 2n 0 | 3 n 0 2 0 | 8 * *x x . x3o4o♦ 24 | 12 12 48 | 6 24 0 24 32 | 0 12 16 0 16 4 | 0 8 2 0 2 | * n *. xno x3o4o♦ 6n | 0 6n 12n | 0 0 6 12n 8n | 0 0 0 12 8n n | 0 0 0 8 n | * * 2
x xno o3x3o (n>2). . . . . . | 12n | 1 2 4 | 2 4 1 8 2 2 | 1 8 2 2 4 4 4 1 | 4 4 4 1 2 2 2 | 2 2 2 1------------+-----+------------+---------------------+-------------------------+-------------------+--------x . . . . . | 2 | 6n * * | 2 4 0 0 0 0 | 1 8 2 2 0 0 0 0 | 4 4 4 1 0 0 0 | 2 2 2 0. x . . . . | 2 | * 12n * | 1 0 1 4 0 0 | 1 4 0 0 4 2 2 0 | 4 2 2 0 2 2 1 | 2 2 1 1. . . . x . | 2 | * * 24n | 0 1 0 2 1 1 | 0 2 1 1 1 2 2 1 | 1 2 2 1 1 1 2 | 1 1 2 1------------+-----+------------+---------------------+-------------------------+-------------------+--------x x . . . . | 4 | 2 2 0 | 6n * * * * * | 1 4 0 0 0 0 0 0 | 4 2 2 0 0 0 0 | 2 2 1 0x . . . x . | 4 | 2 0 2 | * 12n * * * * | 0 2 1 1 0 0 0 0 | 1 2 2 1 0 0 0 | 1 1 2 0. xno . . . | n | 0 n 0 | * * 12 * * * | 1 0 0 0 4 0 0 0 | 4 0 0 0 2 2 0 | 2 2 0 1. x . . x . | 4 | 0 2 2 | * * * 24n * * | 0 1 0 0 1 1 1 0 | 1 1 1 0 1 1 1 | 1 1 1 1. . . o3x . | 3 | 0 0 3 | * * * * 8n * | 0 0 1 0 0 2 0 1 | 0 2 0 1 1 0 2 | 1 0 2 1. . . . x3o | 3 | 0 0 3 | * * * * * 8n | 0 0 0 1 0 0 2 1 | 0 0 2 1 0 1 2 | 0 1 2 1------------+-----+------------+---------------------+-------------------------+-------------------+--------x xno . . .♦ 2n | n 2n 0 | n 0 2 0 0 0 | 6 * * * * * * * | 4 0 0 0 0 0 0 | 2 2 0 0x x . . x .♦ 8 | 4 4 4 | 2 2 0 2 0 0 | * 12n * * * * * * | 1 1 1 0 0 0 0 | 1 1 1 0x . . o3x .♦ 6 | 3 0 6 | 0 3 0 0 2 0 | * * 4n * * * * * | 0 2 0 1 0 0 0 | 1 0 2 0x . . . x3o♦ 6 | 3 0 6 | 0 3 0 0 0 2 | * * * 4n * * * * | 0 0 2 1 0 0 0 | 0 1 2 0. xno . x .♦ 2n | 0 2n n | 0 0 2 n 0 0 | * * * * 24 * * * | 1 0 0 0 1 1 0 | 1 1 0 1. x . o3x .♦ 6 | 0 3 6 | 0 0 0 3 2 0 | * * * * * 8n * * | 0 1 0 0 1 0 1 | 1 0 1 1. x . . x3o♦ 6 | 0 3 6 | 0 0 0 3 0 2 | * * * * * * 8n * | 0 0 1 0 0 1 1 | 0 1 1 1. . . o3x3o♦ 6 | 0 0 12 | 0 0 0 0 4 4 | * * * * * * * 2n | 0 0 0 1 0 0 2 | 0 0 2 1------------+-----+------------+---------------------+-------------------------+-------------------+--------x xno . x .♦ 4n | 2n 4n 2n | 2n n 4 2n 0 0 | 2 n 0 0 2 0 0 0 | 12 * * * * * * | 1 1 0 0x x . o3x .♦ 12 | 6 6 12 | 3 6 0 6 4 0 | 0 3 2 0 0 2 0 0 | * 4n * * * * * | 1 0 1 0x x . . x3o♦ 12 | 6 6 12 | 3 6 0 6 0 4 | 0 3 0 2 0 0 2 0 | * * 4n * * * * | 0 1 1 0x . . o3x3o♦ 12 | 6 0 24 | 0 12 0 0 8 8 | 0 0 4 4 0 0 0 2 | * * * n * * * | 0 0 2 0. xno o3x .♦ 3n | 0 3n 3n | 0 0 3 3n n 0 | 0 0 0 0 3 n 0 0 | * * * * 8 * * | 1 0 0 1. xno . x3o♦ 3n | 0 3n 3n | 0 0 3 3n 0 n | 0 0 0 0 3 0 n 0 | * * * * * 8 * | 0 1 0 1. x . o3x3o♦ 12 | 0 6 24 | 0 0 0 12 8 8 | 0 0 0 0 0 4 4 2 | * * * * * * 2n | 0 0 1 1------------+-----+------------+---------------------+-------------------------+-------------------+--------x xno o3x .♦ 6n | 3n 6n 6n | 3n 3n 6 6n 2n 0 | 3 3n n 0 6 2n 0 0 | 3 n 0 0 2 0 0 | 4 * * *x xno . x3o♦ 6n | 3n 6n 6n | 3n 3n 6 6n 0 2n | 3 3n 0 n 6 0 2n 0 | 3 0 n 0 2 0 0 | * 4 * *x x . o3x3o♦ 24 | 12 12 48 | 6 24 0 24 16 16 | 0 12 8 8 0 8 8 4 | 0 4 4 2 0 0 2 | * * n *. xno o3x3o♦ 6n | 0 6n 12n | 0 0 6 12n 4n 4n | 0 0 0 0 12 4n 4n n | 0 0 0 0 4 4 n | * * * 2
© 2004-2025 | top of page |