This tree diagram shows the relationships between several groups of organisms.
The root of the current tree connects the organisms featured in this tree to their containing group and the rest of the Tree of Life. The basal branching point in the tree represents the ancestor of the other groups in the tree. This ancestor diversified over time into several descendent subgroups, which are represented as internal nodes and terminal taxa to the right.
You can click on the root to travel down the Tree of Life all the way to the root of all Life, and you can click on the names of descendent subgroups to travel up the Tree of Life all the way to individual species.
For more information on ToL tree formatting, please seeInterpreting the Tree or Classification. To learn more about phylogenetic trees, please visit ourPhylogenetic Biology pages.
close boxThe main characteristics supporting the nodes of this phylogeny are:
Node 1: Mineralized exoskeleton, sensory-line canals and grooves
Node 2: Perichondral bone or calcification, externally open endolymphatic duct
Node 3: Paired fins containing musculature and concentrated in pectoral position, two dorsal fins, epicercal (i.e. upwardly tappering) tail, sclerotic ring and scleral ossification, cellular dermal bone
The Vertebrata, or vertebrates, is a very diverse group, ranging from lampreys to Man. It includes all craniates, except hagfishes, and are characterized chiefly by a vertebral column, hence their name. The majority of the extant vertebrates are the jawed vertebrates, or gnathostomes, but lampreys are jawless vertebrates. However, in Late Silurian or Early Devonian times, about 420 to 400 million years ago, the situation was reverse, and the majority of the vertebrate species were jawless fishes (the "ostracoderms", presumably more closely related to the gnathostomes than to lampreys). The decline of the jawless vertebrates and the subsequent rise of the gnathostomes took place about 380 million years ago.
Extant vertebrates comprise two clades: the Hyperoartia, or lampreys, and the Gnathostomata, or jawed vertebrates. In addition, there is a number of taxa of fossil jawless vertebrates which were formerly referred to as the "ostracoderms" ("shell-skinned") because most of them possess an extensive, bony endo- and exoskeleton. The "ostracoderms" lived from the Early ordovician (about 480 million years ago) to the Late Devonian (about 370 million years ago). The relationships of the various groups of "ostracoderms" has been the subject of considerable debate since the mid-nineteenth Century, and the theory of relationship proposed here is far from definitive, yet the best supported by the currently available data. The "ostracoderms" are represented by five major groups, four of which are almost certainly clades: the Heterostraci, Osteostraci, Galeaspida, Anaspida, and Thelodonti (the monophyly of the latter being debated, Thelodonti page). In addition, there are minor groups which only include a few species: the Arandaspida, Astraspida, Eriptychiida, and Pituriaspida. The Arandaspida, Astraspida, Eriptychiida, and Heterostraci are regarded as forming a clade, the Pteraspidomorphi. Some monospecific genera, Jamoytius, Endeiolepis, and Euphanerops, formerly referred to the Anaspida, are now removed from that clade and may be more closely related to lampreys (see Hyperoartia). A large but still poorly known group, the Euconodonta, has recently been included in the Craniata, and possibly the Vertebrata. It is currently referred to as 'conodonts', but the only forms that can reliably be regarded as craniates belong to a subgroup of conodonts known as euconodonts.
The Vertebrata have all the characteristics of the Craniata but share, in addition, a number of unique characteristics which do not occur in hagfishes (Hyperotreti). These characteristics are:
The vertebrates are characterized by a vertebral column; that is, a variable number of endoskeletal elements aligned along the notochord (green) and flanking the spinal cord (yellow). In lampreys (top), the vertebral elements are only the basidorsal (red) and the interdorsals (blue). In the gnathostomes, there are in addition ventral elements, the basiventrals (purple) and interventrals (orange), and the notochord may calcify into centra (pink). (After Janvier 1996).
There are many other vertebrate characteristics, both anatomical and physiological.
As for extant vertebrates, the main question is whether lampreys are the sister-group of the gnathostomes, or that of hagfishes. In the latter case there would be no reason to distinguish the Vertebrata from the Craniata, as it was formerly done. Although there is good evidence for the lamprey-gnathostome sister-group relationship, the theory that the cyclostomes (lampreys,hagfishes) are a clade is still supported by a number of zoologists. Considering the large number of anatomical, physiological and molecular data that are available now to test these theories, one can expect a definitive clue in a near future (for discussion, see Craniata).
The question of the relationships of the numerous extinct vertebrate groups is, in contrast, far from being resolved. This chiefly concerns the Palaeozoic taxa formerly referred to as "ostracoderms"; that is, armored jawless craniates, which are likely to be vertebrates and are now considered as being all more closely related to the gnathostomes than to lampreys.
During most of the nineteenth century, the "ostracoderms" known at that time (i.e. the Heterostraci and Osteostraci) were regarded as bony fishes, until Cope (1889) suggested to include them with lampreys and hagfishes in the taxon Agnatha ("jawless"). In the beginning of the twentieth century, Kiaer (1924) and Stensiö (1927) showed that the Anaspida and Osteostraci share with lampreys a median, dorsally placed "nostril" (in fact a nasohypophysial opening) and suggested to include these three groups in a clade Cephalaspidomorphi. In addition, Stensiö (1927) proposed that hagfishes were derived from the Heterostraci and should be grouped with them in the Pteraspidomorphi. At that time, however, the Agnatha were regarded as a clade, whose sister-group was the Gnathostomata, as illustrated by Stensiö's (1927) diagram:
This theory implied the diphyletic origin of the Recent "cyclostomes" (hagfishes and lampreys). Although they accepted the monophyly of the Cephalaspidomorphi, most paleontologists rejected that of the Pteraspidomorphi (as including hagfishes). In contrast, until the 1970's, it was widely accepted that the Heterostraci are more closely related, or ancestral to the gnathostomes, mainly because they lacked the specializations of the Cephalaspidomorphi and because they had paired olfactory capsules, like the gnathostomes. With the rise of cladistics, in the late 1970's and the 1980's, and following Løvtrup's (1977) suggestion that extant cyclostomes were paraphyletic, a number of trees were published, which all showed the "ostracoderms" (and the Agnatha as a whole) as paraphyletic. However, all these trees implied that lampreys had lost several characteristics, in particular the paired fins, mineralized skeleton, and sensory-line canals. A major change was Gagnier's (1993) first computer-generated tree, in which these reversions were avoided by considering all "ostracoderms" as more closely related to the gnathostomes than to either lampreys and hagfishes. Further analyses (Forey & Janvier 1994, Janvier 1996b) largely confirmed the higher degree of parsimony of this phylogeny. Although there are variations as to the position of certain taxa, the Galeaspida and Osteostraci constantly group together with the Gnathostomes, whereas the Astraspida, Eriptychiida, Arandaspida, and Heterostraci form a clade, the Pteraspidomorphi, albeit poorly supported. One of the consequences of this tree is that the dorsal nasohypophysial opening (formerly the characteristic of the Cephalaspidomorphi) either occurred more than once, or is a general feature of the Vertebrata.
In this tree, four fossil groups are positioned with a question mark. In the case of the Euconodonta, Anaspida and Pituriaspida, this uncertainty is largely due to the scarcity of the characters available from the material (in particular as to the internal anatomy). In the case of the Thelodonti, it is due to their controversial status, as they are likely to be a paraphyletic assemblage of stem Heterostraci and possibly stem forms of other "ostracoderm" groups, yet some authors regard them as a clade (see Thelodonti page).
Forey, P. L. (1984). Yet more reflections on agnathan-gnathostome relationships. Journal of Vertebrate Paleontology, 4, 330-343.
Forey, P. L., and Janvier, P. (1993). Agnathans and the origin of jawed vertebrates. Nature, 361, 129-134.
Forey, P. L., and Janvier, P. (1994). Evolution of the early vertebrates. American Scientist, 82, 554-565.
Hardisty, M. W. (1982). Lampreys and hagfishes: Analysis of cyclostome relationships. In The Biology of Lampreys, (ed. M. W. Hardisty and I. C. Potter), Vol.4B, pp. 165-259. Academic Press, London.
Janvier, P. (1993). Patterns of diversity in the skull of jawless fishes. In The skull (ed. J. Hanken and B. K. Hall), Vol. 2, pp. 131-188. The University of Chicago Press.
Janvier, P. (1996a). Early vertebrates. Oxford Monographs in Geology and Geophysics, 33, Oxford University Press, Oxford.
Janvier, P. (1996b). The dawn of the vertebrates: characters versus common ascent in current vertebrate phylogenies. Palaeontology, 39, 259-287.
Løvtrup, S. (1977). The Phylogeny of Vertebrata. Wiley, New York.
Stensiö, E. A. (1927). The Devonian and Downtonian vertebrates of Spitsbergen. 1. Family Cephalaspidae. Skrifter om Svalbard og Ishavet, 12, 1-391.
Wang, N. Z. (1991). Two new Silurian galeaspids (Jawless craniates) from Zhejiang province, China, with a discussion of galeaspid-gnathostome relationships.In Early vertebrates and related problems of evolutionary biology (ed. M. M. Chang, Y. H. Liu, and G. R. Zhang), pp. 41-65. Science Press, Beijing.
Muséum National d'Histoire Naturelle Paris, France
Page copyright © 1997
Page: Tree of LifeVertebrata. Animals with backbones. Authored byPhilippe Janvier. TheTEXT of this page is licensed under the Creative Commons Attribution License - Version 3.0. Note that images and other media featured on this page are each governed by their own license, and they may or may not be available for reuse. Click on an image or a media link to access the media data window, which provides the relevant licensing information. For the general terms and conditions of ToL material reuse and redistribution, please see theTree of Life Copyright Policies.
Janvier, Philippe. 1997. Vertebrata. Animals with backbones. Version 01 January 1997 (under construction).http://tolweb.org/Vertebrata/14829/1997.01.01in The Tree of Life Web Project,http://tolweb.org/
This page is aTree of Life Branch Page.
Each ToL branch page provides a synopsis of the characteristics of a group of organisms representing a branch of the Tree of Life. The major distinction between abranch and aleaf of the Tree of Life is that each branch can be further subdivided into descendent branches, that is, subgroups representing distinct genetic lineages.
For a more detailed explanation of the different ToL page types, have a look at theStructure of the Tree of Life page.
close boxTree of Life design and icons copyright © 1995-2004 Tree of Life Project. All rights reserved.