Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Ctrl+K

KMeansModel#

classpyspark.ml.clustering.KMeansModel(java_model=None)[source]#

Model fitted by KMeans.

New in version 1.5.0.

Methods

clear(param)

Clears a param from the param map if it has been explicitly set.

clusterCenters()

Get the cluster centers, represented as a list of NumPy arrays.

copy([extra])

Creates a copy of this instance with the same uid and some extra params.

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap([extra])

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

getDistanceMeasure()

Gets the value of distanceMeasure or its default value.

getFeaturesCol()

Gets the value of featuresCol or its default value.

getInitMode()

Gets the value ofinitMode

getInitSteps()

Gets the value ofinitSteps

getK()

Gets the value ofk

getMaxBlockSizeInMB()

Gets the value of maxBlockSizeInMB or its default value.

getMaxIter()

Gets the value of maxIter or its default value.

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value.

getParam(paramName)

Gets a param by its name.

getPredictionCol()

Gets the value of predictionCol or its default value.

getSeed()

Gets the value of seed or its default value.

getSolver()

Gets the value of solver or its default value.

getTol()

Gets the value of tol or its default value.

getWeightCol()

Gets the value of weightCol or its default value.

hasDefault(param)

Checks whether a param has a default value.

hasParam(paramName)

Tests whether this instance contains a param with a given (string) name.

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

isSet(param)

Checks whether a param is explicitly set by user.

load(path)

Reads an ML instance from the input path, a shortcut ofread().load(path).

predict(value)

Predict label for the given features.

read()

Returns an MLReader instance for this class.

save(path)

Save this ML instance to the given path, a shortcut of 'write().save(path)'.

set(param, value)

Sets a parameter in the embedded param map.

setFeaturesCol(value)

Sets the value offeaturesCol.

setPredictionCol(value)

Sets the value ofpredictionCol.

transform(dataset[, params])

Transforms the input dataset with optional parameters.

write()

Returns an GeneralMLWriter instance for this ML instance.

Attributes

distanceMeasure

featuresCol

hasSummary

Indicates whether a training summary exists for this model instance.

initMode

initSteps

k

maxBlockSizeInMB

maxIter

params

Returns all params ordered by name.

predictionCol

seed

solver

summary

Gets summary (cluster assignments, cluster sizes) of the model trained on the training set.

tol

weightCol

Methods Documentation

clear(param)#

Clears a param from the param map if it has been explicitly set.

clusterCenters()[source]#

Get the cluster centers, represented as a list of NumPy arrays.

New in version 1.5.0.

copy(extra=None)#

Creates a copy of this instance with the same uid and someextra params. This implementation first calls Params.copy andthen make a copy of the companion Java pipeline component withextra params. So both the Python wrapper and the Java pipelinecomponent get copied.

Parameters
extradict, optional

Extra parameters to copy to the new instance

Returns
JavaParams

Copy of this instance

explainParam(param)#

Explains a single param and returns its name, doc, and optionaldefault value and user-supplied value in a string.

explainParams()#

Returns the documentation of all params with their optionallydefault values and user-supplied values.

extractParamMap(extra=None)#

Extracts the embedded default param values and user-suppliedvalues, and then merges them with extra values from input intoa flat param map, where the latter value is used if there existconflicts, i.e., with ordering: default param values <user-supplied values < extra.

Parameters
extradict, optional

extra param values

Returns
dict

merged param map

getDistanceMeasure()#

Gets the value of distanceMeasure or its default value.

getFeaturesCol()#

Gets the value of featuresCol or its default value.

getInitMode()#

Gets the value ofinitMode

New in version 1.5.0.

getInitSteps()#

Gets the value ofinitSteps

New in version 1.5.0.

getK()#

Gets the value ofk

New in version 1.5.0.

getMaxBlockSizeInMB()#

Gets the value of maxBlockSizeInMB or its default value.

getMaxIter()#

Gets the value of maxIter or its default value.

getOrDefault(param)#

Gets the value of a param in the user-supplied param map or itsdefault value. Raises an error if neither is set.

getParam(paramName)#

Gets a param by its name.

getPredictionCol()#

Gets the value of predictionCol or its default value.

getSeed()#

Gets the value of seed or its default value.

getSolver()#

Gets the value of solver or its default value.

getTol()#

Gets the value of tol or its default value.

getWeightCol()#

Gets the value of weightCol or its default value.

hasDefault(param)#

Checks whether a param has a default value.

hasParam(paramName)#

Tests whether this instance contains a param with a given(string) name.

isDefined(param)#

Checks whether a param is explicitly set by user or hasa default value.

isSet(param)#

Checks whether a param is explicitly set by user.

classmethodload(path)#

Reads an ML instance from the input path, a shortcut ofread().load(path).

predict(value)[source]#

Predict label for the given features.

New in version 3.0.0.

classmethodread()#

Returns an MLReader instance for this class.

save(path)#

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param,value)#

Sets a parameter in the embedded param map.

setFeaturesCol(value)[source]#

Sets the value offeaturesCol.

New in version 3.0.0.

setPredictionCol(value)[source]#

Sets the value ofpredictionCol.

New in version 3.0.0.

transform(dataset,params=None)#

Transforms the input dataset with optional parameters.

New in version 1.3.0.

Parameters
datasetpyspark.sql.DataFrame

input dataset

paramsdict, optional

an optional param map that overrides embedded params.

Returns
pyspark.sql.DataFrame

transformed dataset

write()#

Returns an GeneralMLWriter instance for this ML instance.

Attributes Documentation

distanceMeasure=Param(parent='undefined',name='distanceMeasure',doc="thedistancemeasure.Supportedoptions:'euclidean'and'cosine'.")#
featuresCol=Param(parent='undefined',name='featuresCol',doc='featurescolumnname.')#
hasSummary#

Indicates whether a training summary exists for this modelinstance.

New in version 2.1.0.

initMode=Param(parent='undefined',name='initMode',doc='Theinitializationalgorithm.Thiscanbeeither"random"tochooserandompointsasinitialclustercenters,or"k-means||"touseaparallelvariantofk-means++')#
initSteps=Param(parent='undefined',name='initSteps',doc='Thenumberofstepsfork-means||initializationmode.Mustbe>0.')#
k=Param(parent='undefined',name='k',doc='Thenumberofclusterstocreate.Mustbe>1.')#
maxBlockSizeInMB=Param(parent='undefined',name='maxBlockSizeInMB',doc='maximummemoryinMBforstackinginputdataintoblocks.Dataisstackedwithinpartitions.Ifmorethanremainingdatasizeinapartitionthenitisadjustedtothedatasize.Default0.0representschoosingoptimalvalue,dependsonspecificalgorithm.Mustbe>=0.')#
maxIter=Param(parent='undefined',name='maxIter',doc='maxnumberofiterations(>=0).')#
params#

Returns all params ordered by name. The default implementationusesdir() to get all attributes of typeParam.

predictionCol=Param(parent='undefined',name='predictionCol',doc='predictioncolumnname.')#
seed=Param(parent='undefined',name='seed',doc='randomseed.')#
solver=Param(parent='undefined',name='solver',doc='Thesolveralgorithmforoptimization.Supportedoptions:auto,row,block.')#
summary#

Gets summary (cluster assignments, cluster sizes) of the model trained on thetraining set. An exception is thrown if no summary exists.

New in version 2.1.0.

tol=Param(parent='undefined',name='tol',doc='theconvergencetoleranceforiterativealgorithms(>=0).')#
weightCol=Param(parent='undefined',name='weightCol',doc='weightcolumnname.Ifthisisnotsetorempty,wetreatallinstanceweightsas1.0.')#
uid#

A unique id for the object.


[8]ページ先頭

©2009-2025 Movatter.jp