InputTags#
- classsklearn.utils.InputTags(one_d_array:bool=False,two_d_array:bool=True,three_d_array:bool=False,sparse:bool=False,categorical:bool=False,string:bool=False,dict:bool=False,positive_only:bool=False,allow_nan:bool=False,pairwise:bool=False)[source]#
Tags for the input data.
- Parameters:
- one_d_arraybool, default=False
Whether the input can be a 1D array.
- two_d_arraybool, default=True
Whether the input can be a 2D array. Note that most commontests currently run only if this flag is set to
True.- three_d_arraybool, default=False
Whether the input can be a 3D array.
- sparsebool, default=False
Whether the input can be a sparse matrix.
- categoricalbool, default=False
Whether the input can be categorical.
- stringbool, default=False
Whether the input can be an array-like of strings.
- dictbool, default=False
Whether the input can be a dictionary.
- positive_onlybool, default=False
Whether the estimator requires positive X.
- allow_nanbool, default=False
Whether the estimator supports data with missing values encoded as
np.nan.- pairwisebool, default=False
This boolean attribute indicates whether the data (
X),fit and similar methods consists of pairwise measuresover samples rather than a feature representation for eachsample. It is usuallyTruewhere an estimator has ametricoraffinityorkernelparameter with value‘precomputed’. Its primary purpose is to support ameta-estimator or a cross validation procedure thatextracts a sub-sample of data intended for a pairwiseestimator, where the data needs to be indexed on both axes.Specifically, this tag is used bysklearn.utils.metaestimators._safe_splitto slice rows andcolumns.Note that if setting this tag to
Truemeans the estimator can take onlypositive values, thepositive_onlytag must reflect it and also be set toTrue.
