add_dummy_feature#
- sklearn.preprocessing.add_dummy_feature(X,value=1.0)[source]#
Augment dataset with an additional dummy feature.
This is useful for fitting an intercept term with implementations whichcannot otherwise fit it directly.
- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
Data.
- valuefloat
Value to use for the dummy feature.
- Returns:
- X{ndarray, sparse matrix} of shape (n_samples, n_features + 1)
Same data with dummy feature added as first column.
Examples
>>>fromsklearn.preprocessingimportadd_dummy_feature>>>add_dummy_feature([[0,1],[1,0]])array([[1., 0., 1.], [1., 1., 0.]])
On this page
