root_mean_squared_error#

sklearn.metrics.root_mean_squared_error(y_true,y_pred,*,sample_weight=None,multioutput='uniform_average')[source]#

Root mean squared error regression loss.

Read more in theUser Guide.

Added in version 1.4.

Parameters:
y_truearray-like of shape (n_samples,) or (n_samples, n_outputs)

Ground truth (correct) target values.

y_predarray-like of shape (n_samples,) or (n_samples, n_outputs)

Estimated target values.

sample_weightarray-like of shape (n_samples,), default=None

Sample weights.

multioutput{‘raw_values’, ‘uniform_average’} or array-like of shape (n_outputs,), default=’uniform_average’

Defines aggregating of multiple output values.Array-like value defines weights used to average errors.

‘raw_values’ :

Returns a full set of errors in case of multioutput input.

‘uniform_average’ :

Errors of all outputs are averaged with uniform weight.

Returns:
lossfloat or ndarray of floats

A non-negative floating point value (the best value is 0.0), or anarray of floating point values, one for each individual target.

Examples

>>>fromsklearn.metricsimportroot_mean_squared_error>>>y_true=[3,-0.5,2,7]>>>y_pred=[2.5,0.0,2,8]>>>root_mean_squared_error(y_true,y_pred)0.612...>>>y_true=[[0.5,1],[-1,1],[7,-6]]>>>y_pred=[[0,2],[-1,2],[8,-5]]>>>root_mean_squared_error(y_true,y_pred)0.822...

Gallery examples#

Lagged features for time series forecasting

Lagged features for time series forecasting

Features in Histogram Gradient Boosting Trees

Features in Histogram Gradient Boosting Trees