rbf_kernel#
- sklearn.metrics.pairwise.rbf_kernel(X,Y=None,gamma=None)[source]#
Compute the rbf (gaussian) kernel between X and Y.
K(x, y) = exp(-gamma ||x-y||^2)
for each pair of rows x in X and y in Y.
Read more in theUser Guide.
- Parameters:
- X{array-like, sparse matrix} of shape (n_samples_X, n_features)
A feature array.
- Y{array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None
An optional second feature array. If
None, usesY=X.- gammafloat, default=None
If None, defaults to 1.0 / n_features.
- Returns:
- kernelndarray of shape (n_samples_X, n_samples_Y)
The RBF kernel.
Examples
>>>fromsklearn.metrics.pairwiseimportrbf_kernel>>>X=[[0,0,0],[1,1,1]]>>>Y=[[1,0,0],[1,1,0]]>>>rbf_kernel(X,Y)array([[0.71, 0.51], [0.51, 0.71]])
On this page
