mean_squared_log_error#
- sklearn.metrics.mean_squared_log_error(y_true,y_pred,*,sample_weight=None,multioutput='uniform_average')[source]#
Mean squared logarithmic error regression loss.
Read more in theUser Guide.
- Parameters:
- y_truearray-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
- y_predarray-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- multioutput{‘raw_values’, ‘uniform_average’} or array-like of shape (n_outputs,), default=’uniform_average’
Defines aggregating of multiple output values.Array-like value defines weights used to average errors.
- ‘raw_values’ :
Returns a full set of errors when the input is of multioutputformat.
- ‘uniform_average’ :
Errors of all outputs are averaged with uniform weight.
- Returns:
- lossfloat or ndarray of floats
A non-negative floating point value (the best value is 0.0), or anarray of floating point values, one for each individual target.
Examples
>>>fromsklearn.metricsimportmean_squared_log_error>>>y_true=[3,5,2.5,7]>>>y_pred=[2.5,5,4,8]>>>mean_squared_log_error(y_true,y_pred)0.039...>>>y_true=[[0.5,1],[1,2],[7,6]]>>>y_pred=[[0.5,2],[1,2.5],[8,8]]>>>mean_squared_log_error(y_true,y_pred)0.044...>>>mean_squared_log_error(y_true,y_pred,multioutput='raw_values')array([0.00462428, 0.08377444])>>>mean_squared_log_error(y_true,y_pred,multioutput=[0.3,0.7])0.060...
On this page
