PrecisionRecallDisplay#
- classsklearn.metrics.PrecisionRecallDisplay(precision,recall,*,average_precision=None,estimator_name=None,pos_label=None,prevalence_pos_label=None)[source]#
Precision Recall visualization.
It is recommended to use
from_estimatororfrom_predictionsto createaPrecisionRecallDisplay. All parameters arestored as attributes.For general information regarding
scikit-learnvisualization tools, seetheVisualization Guide.For guidance on interpreting these plots, refer to theModelEvaluation Guide.- Parameters:
- precisionndarray
Precision values.
- recallndarray
Recall values.
- average_precisionfloat, default=None
Average precision. If None, the average precision is not shown.
- estimator_namestr, default=None
Name of estimator. If None, then the estimator name is not shown.
- pos_labelint, float, bool or str, default=None
The class considered as the positive class. If None, the class will notbe shown in the legend.
Added in version 0.24.
- prevalence_pos_labelfloat, default=None
The prevalence of the positive label. It is used for plotting thechance level line. If None, the chance level line will not be plottedeven if
plot_chance_levelis set to True when plotting.Added in version 1.3.
- Attributes:
- line_matplotlib Artist
Precision recall curve.
- chance_level_matplotlib Artist or None
The chance level line. It is
Noneif the chance level is not plotted.Added in version 1.3.
- ax_matplotlib Axes
Axes with precision recall curve.
- figure_matplotlib Figure
Figure containing the curve.
See also
precision_recall_curveCompute precision-recall pairs for different probability thresholds.
PrecisionRecallDisplay.from_estimatorPlot Precision Recall Curve given a binary classifier.
PrecisionRecallDisplay.from_predictionsPlot Precision Recall Curve using predictions from a binary classifier.
Notes
The average precision (cf.
average_precision_score) inscikit-learn is computed without any interpolation. To be consistent withthis metric, the precision-recall curve is plotted without anyinterpolation as well (step-wise style).You can change this style by passing the keyword argument
drawstyle="default"inplot,from_estimator, orfrom_predictions. However, the curve will not be strictlyconsistent with the reported average precision.Examples
>>>importmatplotlib.pyplotasplt>>>fromsklearn.datasetsimportmake_classification>>>fromsklearn.metricsimport(precision_recall_curve,...PrecisionRecallDisplay)>>>fromsklearn.model_selectionimporttrain_test_split>>>fromsklearn.svmimportSVC>>>X,y=make_classification(random_state=0)>>>X_train,X_test,y_train,y_test=train_test_split(X,y,...random_state=0)>>>clf=SVC(random_state=0)>>>clf.fit(X_train,y_train)SVC(random_state=0)>>>predictions=clf.predict(X_test)>>>precision,recall,_=precision_recall_curve(y_test,predictions)>>>disp=PrecisionRecallDisplay(precision=precision,recall=recall)>>>disp.plot()<...>>>>plt.show()

- classmethodfrom_estimator(estimator,X,y,*,sample_weight=None,drop_intermediate=False,response_method='auto',pos_label=None,name=None,ax=None,plot_chance_level=False,chance_level_kw=None,despine=False,**kwargs)[source]#
Plot precision-recall curve given an estimator and some data.
For general information regarding
scikit-learnvisualization tools, seetheVisualization Guide.For guidance on interpreting these plots, refer to theModelEvaluation Guide.- Parameters:
- estimatorestimator instance
Fitted classifier or a fitted
Pipelinein which the last estimator is a classifier.- X{array-like, sparse matrix} of shape (n_samples, n_features)
Input values.
- yarray-like of shape (n_samples,)
Target values.
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- drop_intermediatebool, default=False
Whether to drop some suboptimal thresholds which would not appearon a plotted precision-recall curve. This is useful in order tocreate lighter precision-recall curves.
Added in version 1.3.
- response_method{‘predict_proba’, ‘decision_function’, ‘auto’}, default=’auto’
Specifies whether to usepredict_proba ordecision_function as the target response. If set to ‘auto’,predict_proba is tried first and if it does not existdecision_function is tried next.
- pos_labelint, float, bool or str, default=None
The class considered as the positive class when computing theprecision and recall metrics. By default,
estimators.classes_[1]is considered as the positive class.- namestr, default=None
Name for labeling curve. If
None, no name is used.- axmatplotlib axes, default=None
Axes object to plot on. If
None, a new figure and axes is created.- plot_chance_levelbool, default=False
Whether to plot the chance level. The chance level is the prevalenceof the positive label computed from the data passed during
from_estimatororfrom_predictionscall.Added in version 1.3.
- chance_level_kwdict, default=None
Keyword arguments to be passed to matplotlib’s
plotfor renderingthe chance level line.Added in version 1.3.
- despinebool, default=False
Whether to remove the top and right spines from the plot.
Added in version 1.6.
- **kwargsdict
Keyword arguments to be passed to matplotlib’s
plot.
- Returns:
- display
PrecisionRecallDisplay
- display
See also
PrecisionRecallDisplay.from_predictionsPlot precision-recall curve using estimated probabilities or output of decision function.
Notes
The average precision (cf.
average_precision_score)in scikit-learn is computed without any interpolation. To be consistentwith this metric, the precision-recall curve is plotted without anyinterpolation as well (step-wise style).You can change this style by passing the keyword argument
drawstyle="default". However, the curve will not be strictlyconsistent with the reported average precision.Examples
>>>importmatplotlib.pyplotasplt>>>fromsklearn.datasetsimportmake_classification>>>fromsklearn.metricsimportPrecisionRecallDisplay>>>fromsklearn.model_selectionimporttrain_test_split>>>fromsklearn.linear_modelimportLogisticRegression>>>X,y=make_classification(random_state=0)>>>X_train,X_test,y_train,y_test=train_test_split(...X,y,random_state=0)>>>clf=LogisticRegression()>>>clf.fit(X_train,y_train)LogisticRegression()>>>PrecisionRecallDisplay.from_estimator(...clf,X_test,y_test)<...>>>>plt.show()

- classmethodfrom_predictions(y_true,y_pred,*,sample_weight=None,drop_intermediate=False,pos_label=None,name=None,ax=None,plot_chance_level=False,chance_level_kw=None,despine=False,**kwargs)[source]#
Plot precision-recall curve given binary class predictions.
For general information regarding
scikit-learnvisualization tools, seetheVisualization Guide.For guidance on interpreting these plots, refer to theModelEvaluation Guide.- Parameters:
- y_truearray-like of shape (n_samples,)
True binary labels.
- y_predarray-like of shape (n_samples,)
Estimated probabilities or output of decision function.
- sample_weightarray-like of shape (n_samples,), default=None
Sample weights.
- drop_intermediatebool, default=False
Whether to drop some suboptimal thresholds which would not appearon a plotted precision-recall curve. This is useful in order tocreate lighter precision-recall curves.
Added in version 1.3.
- pos_labelint, float, bool or str, default=None
The class considered as the positive class when computing theprecision and recall metrics.
- namestr, default=None
Name for labeling curve. If
None, name will be set to"Classifier".- axmatplotlib axes, default=None
Axes object to plot on. If
None, a new figure and axes is created.- plot_chance_levelbool, default=False
Whether to plot the chance level. The chance level is the prevalenceof the positive label computed from the data passed during
from_estimatororfrom_predictionscall.Added in version 1.3.
- chance_level_kwdict, default=None
Keyword arguments to be passed to matplotlib’s
plotfor renderingthe chance level line.Added in version 1.3.
- despinebool, default=False
Whether to remove the top and right spines from the plot.
Added in version 1.6.
- **kwargsdict
Keyword arguments to be passed to matplotlib’s
plot.
- Returns:
- display
PrecisionRecallDisplay
- display
See also
PrecisionRecallDisplay.from_estimatorPlot precision-recall curve using an estimator.
Notes
The average precision (cf.
average_precision_score)in scikit-learn is computed without any interpolation. To be consistentwith this metric, the precision-recall curve is plotted without anyinterpolation as well (step-wise style).You can change this style by passing the keyword argument
drawstyle="default". However, the curve will not be strictlyconsistent with the reported average precision.Examples
>>>importmatplotlib.pyplotasplt>>>fromsklearn.datasetsimportmake_classification>>>fromsklearn.metricsimportPrecisionRecallDisplay>>>fromsklearn.model_selectionimporttrain_test_split>>>fromsklearn.linear_modelimportLogisticRegression>>>X,y=make_classification(random_state=0)>>>X_train,X_test,y_train,y_test=train_test_split(...X,y,random_state=0)>>>clf=LogisticRegression()>>>clf.fit(X_train,y_train)LogisticRegression()>>>y_pred=clf.predict_proba(X_test)[:,1]>>>PrecisionRecallDisplay.from_predictions(...y_test,y_pred)<...>>>>plt.show()

- plot(ax=None,*,name=None,plot_chance_level=False,chance_level_kw=None,despine=False,**kwargs)[source]#
Plot visualization.
Extra keyword arguments will be passed to matplotlib’s
plot.- Parameters:
- axMatplotlib Axes, default=None
Axes object to plot on. If
None, a new figure and axes iscreated.- namestr, default=None
Name of precision recall curve for labeling. If
None, useestimator_nameif notNone, otherwise no labeling is shown.- plot_chance_levelbool, default=False
Whether to plot the chance level. The chance level is the prevalenceof the positive label computed from the data passed during
from_estimatororfrom_predictionscall.Added in version 1.3.
- chance_level_kwdict, default=None
Keyword arguments to be passed to matplotlib’s
plotfor renderingthe chance level line.Added in version 1.3.
- despinebool, default=False
Whether to remove the top and right spines from the plot.
Added in version 1.6.
- **kwargsdict
Keyword arguments to be passed to matplotlib’s
plot.
- Returns:
- display
PrecisionRecallDisplay Object that stores computed values.
- display
Notes
The average precision (cf.
average_precision_score)in scikit-learn is computed without any interpolation. To be consistentwith this metric, the precision-recall curve is plotted without anyinterpolation as well (step-wise style).You can change this style by passing the keyword argument
drawstyle="default". However, the curve will not be strictlyconsistent with the reported average precision.
Gallery examples#
Post-tuning the decision threshold for cost-sensitive learning
