lasso_path#
- sklearn.linear_model.lasso_path(X,y,*,eps=0.001,n_alphas=100,alphas=None,precompute='auto',Xy=None,copy_X=True,coef_init=None,verbose=False,return_n_iter=False,positive=False,**params)[source]#
Compute Lasso path with coordinate descent.
The Lasso optimization function varies for mono and multi-outputs.
For mono-output tasks it is:
(1/(2*n_samples))*||y-Xw||^2_2+alpha*||w||_1
For multi-output tasks it is:
(1/(2*n_samples))*||Y-XW||^2_Fro+alpha*||W||_21
Where:
||W||_21= \sum_i \sqrt{\sum_jw_{ij}^2}
i.e. the sum of norm of each row.
Read more in theUser Guide.
- Parameters:
- X{array-like, sparse matrix} of shape (n_samples, n_features)
Training data. Pass directly as Fortran-contiguous data to avoidunnecessary memory duplication. If
yis mono-output thenXcan be sparse.- y{array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_targets)
Target values.
- epsfloat, default=1e-3
Length of the path.
eps=1e-3means thatalpha_min/alpha_max=1e-3.- n_alphasint, default=100
Number of alphas along the regularization path.
- alphasarray-like, default=None
List of alphas where to compute the models.If
Nonealphas are set automatically.- precompute‘auto’, bool or array-like of shape (n_features, n_features), default=’auto’
Whether to use a precomputed Gram matrix to speed upcalculations. If set to
'auto'let us decide. The Grammatrix can also be passed as argument.- Xyarray-like of shape (n_features,) or (n_features, n_targets), default=None
Xy = np.dot(X.T, y) that can be precomputed. It is usefulonly when the Gram matrix is precomputed.
- copy_Xbool, default=True
If
True, X will be copied; else, it may be overwritten.- coef_initarray-like of shape (n_features, ), default=None
The initial values of the coefficients.
- verbosebool or int, default=False
Amount of verbosity.
- return_n_iterbool, default=False
Whether to return the number of iterations or not.
- positivebool, default=False
If set to True, forces coefficients to be positive.(Only allowed when
y.ndim==1).- **paramskwargs
Keyword arguments passed to the coordinate descent solver.
- Returns:
- alphasndarray of shape (n_alphas,)
The alphas along the path where models are computed.
- coefsndarray of shape (n_features, n_alphas) or (n_targets, n_features, n_alphas)
Coefficients along the path.
- dual_gapsndarray of shape (n_alphas,)
The dual gaps at the end of the optimization for each alpha.
- n_iterslist of int
The number of iterations taken by the coordinate descent optimizer toreach the specified tolerance for each alpha.
See also
lars_pathCompute Least Angle Regression or Lasso path using LARS algorithm.
LassoThe Lasso is a linear model that estimates sparse coefficients.
LassoLarsLasso model fit with Least Angle Regression a.k.a. Lars.
LassoCVLasso linear model with iterative fitting along a regularization path.
LassoLarsCVCross-validated Lasso using the LARS algorithm.
sklearn.decomposition.sparse_encodeEstimator that can be used to transform signals into sparse linear combination of atoms from a fixed.
Notes
For an example, seeexamples/linear_model/plot_lasso_lasso_lars_elasticnet_path.py.
To avoid unnecessary memory duplication the X argument of the fit methodshould be directly passed as a Fortran-contiguous numpy array.
Note that in certain cases, the Lars solver may be significantlyfaster to implement this functionality. In particular, linearinterpolation can be used to retrieve model coefficients between thevalues output by lars_path
Examples
Comparing lasso_path and lars_path with interpolation:
>>>importnumpyasnp>>>fromsklearn.linear_modelimportlasso_path>>>X=np.array([[1,2,3.1],[2.3,5.4,4.3]]).T>>>y=np.array([1,2,3.1])>>># Use lasso_path to compute a coefficient path>>>_,coef_path,_=lasso_path(X,y,alphas=[5.,1.,.5])>>>print(coef_path)[[0. 0. 0.46874778] [0.2159048 0.4425765 0.23689075]]
>>># Now use lars_path and 1D linear interpolation to compute the>>># same path>>>fromsklearn.linear_modelimportlars_path>>>alphas,active,coef_path_lars=lars_path(X,y,method='lasso')>>>fromscipyimportinterpolate>>>coef_path_continuous=interpolate.interp1d(alphas[::-1],...coef_path_lars[:,::-1])>>>print(coef_path_continuous([5.,1.,.5]))[[0. 0. 0.46915237] [0.2159048 0.4425765 0.23668876]]
