make_sparse_uncorrelated#
- sklearn.datasets.make_sparse_uncorrelated(n_samples=100,n_features=10,*,random_state=None)[source]#
Generate a random regression problem with sparse uncorrelated design.
This dataset is described in Celeux et al [1]. as:
X~N(0,1)y(X)=X[:,0]+2*X[:,1]-2*X[:,2]-1.5*X[:,3]
Only the first 4 features are informative. The remaining features areuseless.
Read more in theUser Guide.
- Parameters:
- n_samplesint, default=100
The number of samples.
- n_featuresint, default=10
The number of features.
- random_stateint, RandomState instance or None, default=None
Determines random number generation for dataset creation. Pass an intfor reproducible output across multiple function calls.SeeGlossary.
- Returns:
- Xndarray of shape (n_samples, n_features)
The input samples.
- yndarray of shape (n_samples,)
The output values.
References
[1]G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert,“Regularization in regression: comparing Bayesian and frequentistmethods in a poorly informative situation”, 2009.
Examples
>>>fromsklearn.datasetsimportmake_sparse_uncorrelated>>>X,y=make_sparse_uncorrelated(random_state=0)>>>X.shape(100, 10)>>>y.shape(100,)
On this page
