fetch_openml#
- sklearn.datasets.fetch_openml(name:str|None=None,*,version:str|int='active',data_id:int|None=None,data_home:str|PathLike|None=None,target_column:str|List|None='default-target',cache:bool=True,return_X_y:bool=False,as_frame:str|bool='auto',n_retries:int=3,delay:float=1.0,parser:str='auto',read_csv_kwargs:Dict|None=None)[source]#
Fetch dataset from openml by name or dataset id.
Datasets are uniquely identified by either an integer ID or by acombination of name and version (i.e. there might be multipleversions of the ‘iris’ dataset). Please give either name or data_id(not both). In case a name is given, a version can also beprovided.
Read more in theUser Guide.
Added in version 0.20.
Note
EXPERIMENTAL
The API is experimental (particularly the return value structure),and might have small backward-incompatible changes without noticeor warning in future releases.
- Parameters:
- namestr, default=None
String identifier of the dataset. Note that OpenML can have multipledatasets with the same name.
- versionint or ‘active’, default=’active’
Version of the dataset. Can only be provided if also
nameis given.If ‘active’ the oldest version that’s still active is used. Sincethere may be more than one active version of a dataset, and thoseversions may fundamentally be different from one another, setting anexact version is highly recommended.- data_idint, default=None
OpenML ID of the dataset. The most specific way of retrieving adataset. If data_id is not given, name (and potential version) areused to obtain a dataset.
- data_homestr or path-like, default=None
Specify another download and cache folder for the data sets. By defaultall scikit-learn data is stored in ‘~/scikit_learn_data’ subfolders.
- target_columnstr, list or None, default=’default-target’
Specify the column name in the data to use as target. If‘default-target’, the standard target column a stored on the serveris used. If
None, all columns are returned as data and thetarget isNone. If list (of strings), all columns with these namesare returned as multi-target (Note: not all scikit-learn classifierscan handle all types of multi-output combinations).- cachebool, default=True
Whether to cache the downloaded datasets into
data_home.- return_X_ybool, default=False
If True, returns
(data,target)instead of a Bunch object. Seebelow for more information about thedataandtargetobjects.- as_framebool or ‘auto’, default=’auto’
If True, the data is a pandas DataFrame including columns withappropriate dtypes (numeric, string or categorical). The target isa pandas DataFrame or Series depending on the number of target_columns.The Bunch will contain a
frameattribute with the target and thedata. Ifreturn_X_yis True, then(data,target)will be pandasDataFrames or Series as describe above.If
as_frameis ‘auto’, the data and target will be converted toDataFrame or Series as ifas_frameis set to True, unless the datasetis stored in sparse format.If
as_frameis False, the data and target will be NumPy arrays andthedatawill only contain numerical values whenparser="liac-arff"where the categories are provided in the attributecategoriesof theBunchinstance. Whenparser="pandas", no ordinal encoding is made.Changed in version 0.24:The default value of
as_framechanged fromFalseto'auto'in 0.24.- n_retriesint, default=3
Number of retries when HTTP errors or network timeouts are encountered.Error with status code 412 won’t be retried as they represent OpenMLgeneric errors.
- delayfloat, default=1.0
Number of seconds between retries.
- parser{“auto”, “pandas”, “liac-arff”}, default=”auto”
Parser used to load the ARFF file. Two parsers are implemented:
"pandas": this is the most efficient parser. However, it requirespandas to be installed and can only open dense datasets."liac-arff": this is a pure Python ARFF parser that is much lessmemory- and CPU-efficient. It deals with sparse ARFF datasets.
If
"auto", the parser is chosen automatically such that"liac-arff"is selected for sparse ARFF datasets, otherwise"pandas"is selected.Added in version 1.2.
Changed in version 1.4:The default value of
parserchanges from"liac-arff"to"auto".- read_csv_kwargsdict, default=None
Keyword arguments passed to
pandas.read_csvwhen loading the datafrom a ARFF file and using the pandas parser. It can allow tooverwrite some default parameters.Added in version 1.3.
- Returns:
- data
Bunch Dictionary-like object, with the following attributes.
- datanp.array, scipy.sparse.csr_matrix of floats, or pandas DataFrame
The feature matrix. Categorical features are encoded as ordinals.
- targetnp.array, pandas Series or DataFrame
The regression target or classification labels, if applicable.Dtype is float if numeric, and object if categorical. If
as_frameis True,targetis a pandas object.- DESCRstr
The full description of the dataset.
- feature_nameslist
The names of the dataset columns.
- target_names: list
The names of the target columns.
Added in version 0.22.
- categoriesdict or None
Maps each categorical feature name to a list of values, suchthat the value encoded as i is ith in the list. If
as_frameis True, this is None.- detailsdict
More metadata from OpenML.
- framepandas DataFrame
Only present when
as_frame=True. DataFrame withdataandtarget.
- (data, target)tuple if
return_X_yis True Note
EXPERIMENTAL
This interface isexperimental and subsequent releases maychange attributes without notice (although there should only beminor changes to
dataandtarget).Missing values in the ‘data’ are represented as NaN’s. Missing valuesin ‘target’ are represented as NaN’s (numerical target) or None(categorical target).
- data
Notes
The
"pandas"and"liac-arff"parsers can lead to different data typesin the output. The notable differences are the following:The
"liac-arff"parser always encodes categorical features asstrobjects.To the contrary, the"pandas"parser instead infers the type whilereading and numerical categories will be casted into integers wheneverpossible.The
"liac-arff"parser uses float64 to encode numerical featurestagged as ‘REAL’ and ‘NUMERICAL’ in the metadata. The"pandas"parser instead infers if these numerical features correspondsto integers and uses panda’s Integer extension dtype.In particular, classification datasets with integer categories aretypically loaded as such
(0,1,...)with the"pandas"parser while"liac-arff"will force the use of string encoded class labels such as"0","1"and so on.The
"pandas"parser will not strip single quotes - i.e.'- fromstring columns. For instance, a string'mystring'will be kept as iswhile the"liac-arff"parser will strip the single quotes. Forcategorical columns, the single quotes are stripped from the values.
In addition, when
as_frame=Falseis used, the"liac-arff"parserreturns ordinally encoded data where the categories are provided in theattributecategoriesof theBunchinstance. Instead,"pandas"returnsa NumPy array were the categories are not encoded.Examples
>>>fromsklearn.datasetsimportfetch_openml>>>adult=fetch_openml("adult",version=2)>>>adult.frame.info()<class 'pandas.core.frame.DataFrame'>RangeIndex: 48842 entries, 0 to 48841Data columns (total 15 columns): # Column Non-Null Count Dtype--- ------ -------------- ----- 0 age 48842 non-null int64 1 workclass 46043 non-null category 2 fnlwgt 48842 non-null int64 3 education 48842 non-null category 4 education-num 48842 non-null int64 5 marital-status 48842 non-null category 6 occupation 46033 non-null category 7 relationship 48842 non-null category 8 race 48842 non-null category 9 sex 48842 non-null category 10 capital-gain 48842 non-null int64 11 capital-loss 48842 non-null int64 12 hours-per-week 48842 non-null int64 13 native-country 47985 non-null category 14 class 48842 non-null categorydtypes: category(9), int64(6)memory usage: 2.7 MB
Gallery examples#
Effect of transforming the targets in regression model
Forecasting of CO2 level on Mona Loa dataset using Gaussian process regression (GPR)
Common pitfalls in the interpretation of coefficients of linear models
Partial Dependence and Individual Conditional Expectation Plots
Permutation Importance vs Random Forest Feature Importance (MDI)
MNIST classification using multinomial logistic + L1
Post-tuning the decision threshold for cost-sensitive learning
Post-hoc tuning the cut-off point of decision function
Multilabel classification using a classifier chain
