Movatterモバイル変換


[0]ホーム

URL:


WOLFRAM

Wolfram Language & System Documentation Center
LaguerreL

LaguerreL[n,x]

gives the Laguerre polynomialTemplateBox[{n, x}, LaguerreL].

LaguerreL[n,a,x]

gives the generalized Laguerre polynomialTemplateBox[{n, a, x}, LaguerreL3].

Details
Details and OptionsDetails and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Show MoreShow More
Function Properties  
Differentiation  
Integration  
Series Expansions  
Function Identities and Simplifications  
Generalizations & Extensions  
Applications  
Properties & Relations  
Possible Issues  
See Also
Tech Notes
Related Guides
Related Links
History
Cite this Page

LaguerreL

LaguerreL[n,x]

gives the Laguerre polynomialTemplateBox[{n, x}, LaguerreL].

LaguerreL[n,a,x]

gives the generalized Laguerre polynomialTemplateBox[{n, a, x}, LaguerreL3].

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • Explicit polynomials are given when possible.
  • TemplateBox[{n, x}, LaguerreL]=TemplateBox[{n, 0, x}, LaguerreL3].
  • The Laguerre polynomials are orthogonal with weight function.
  • They satisfy the differential equation.
  • For certain special arguments,LaguerreL automatically evaluates to exact values.
  • LaguerreL can be evaluated to arbitrary numerical precision.
  • LaguerreL automatically threads over lists.
  • LaguerreL[n,x] is an entire function ofx with no branch cut discontinuities.
  • LaguerreL can be used withInterval andCenteredInterval objects.»

Examples

open allclose all

Basic Examples  (6)

Compute the 5^(th) Laguerre polynomial:

Compute the associated Laguerre polynomial:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

Series expansion atInfinity:

Scope  (41)

Numerical Evaluation  (6)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number input:

Evaluate efficiently at high precision:

Compute worst-case guaranteed intervals usingInterval andCenteredInterval objects:

Or compute average-case statistical intervals usingAround:

Compute the elementwise values of an array:

Or compute the matrixLaguerreL function usingMatrixFunction:

Specific Values  (5)

Values ofLaguerreL at fixed points:

Values at zero:

Find the first positive minimum ofLaguerreL[10,x]:

Compute the associatedLaguerreL[7,x] polynomial:

DifferentLaguerreL types give different symbolic forms:

Visualization  (3)

Plot theLaguerreL polynomial for various orders:

Plot the real part ofTemplateBox[{10}, LucasL](z):

Plot the imaginary part ofTemplateBox[{10}, LucasL](z):

Plot as real parts of two parameters vary:

Function Properties  (13)

The primary Laguerre function is defined for all real and complex values:

The associated Laguerre functionTemplateBox[{n, a, z}, LaguerreL3] has restrictions on and, but not:

TemplateBox[{1, x}, LaguerreL] achieves all real and complex values:

So do all associatedTemplateBox[{1, n, x}, LaguerreL3]:

Function range ofTemplateBox[{2, x}, LaguerreL]:

LaguerreL has the mirror property:

LaguerreL threads elementwise over lists:

TemplateBox[{n, x}, LaguerreL] is an analytic function of and:

TemplateBox[{n, a, x}, LaguerreL3] is not analytic, but it is meromorphic:

TemplateBox[{1, a, x}, LaguerreL3] is a decreasing function:

TemplateBox[{2, a, x}, LaguerreL3] is neither non-decreasing nor non-increasing:

Laguerre polynomials are not injective for values other than 1:

TemplateBox[{n, a, x}, LaguerreL3] is surjective for odd:

LaguerreL is neither non-negative nor non-positive:

TemplateBox[{n, a, x}, LaguerreL3] has no singularities or discontinuities in:

TemplateBox[{2, a, x}, LaguerreL3] is convex:

TraditionalForm formatting:

Differentiation  (3)

First derivative with respect tox:

Higher derivatives with respect tox:

Plot the higher derivatives with respect tox whenn=3:

Formula for the^(th) derivative with respect tox:

Integration  (3)

Compute the indefinite integral usingIntegrate:

Definite integral:

More integrals:

Series Expansions  (5)

Find the Taylor expansion usingSeries:

Plots of the first three approximations around:

General term in the series expansion usingSeriesCoefficient:

Find the series expansion atInfinity:

Find series expansion for an arbitrary symbolic direction:

Taylor expansion at a generic point:

Function Identities and Simplifications  (3)

LaguerreL may reduce to simpler form:

Generating function ofLaguerreL:

Recurrence identity:

Generalizations & Extensions  (1)

LaguerreL can be applied to a power series:

Applications  (6)

Solve the Laguerre differential equation:

Generalized Fourier series for functions defined on:

Radial wave-function of the hydrogen atom:

Compute the energy eigenvalue from the differential equation:

The energy is independent of the orbital quantum numberl:

The number of derangement anagrams for a word with character counts:

Count the number of derangements for the word Mathematica:

Direct count:

Compare the value of theMarcumQ function for large arguments to its asymptotic formula:

Construct an approximation using the central limit theorem:

Evaluate numerically:

Ann-point GaussLaguerre quadrature rule is based on the roots of then^(th)-order Laguerre polynomial. Compute the nodes and weights of ann-point GaussLaguerre quadrature rule for a given value of:

Use then-point Gaussian quadrature rule to numerically evaluate an integral:

Compare the result of the GaussLaguerre quadrature with the result fromNIntegrate:

Properties & Relations  (7)

Get the list of coefficients in a Laguerre polynomial:

UseFunctionExpand to expandLaguerreL functions into simpler functions:

LaguerreL can be represented as aDifferentialRoot:

LaguerreL can be represented in terms ofMeijerG:

LaguerreL can be represented as aDifferenceRoot:

General term in the series expansion ofLaguerreL:

The generating function forLaguerreL:

Possible Issues  (1)

Cancellations in the polynomial form may lead to inaccurate numerical results:

Evaluate the function directly:

See Also

HermiteH WhittakerM WhittakerW Hypergeometric1F1

Tech Notes

Related Guides

Related Links

History

Introduced in 1988(1.0) |Updated in 2021(13.0)2022(13.1)

Wolfram Research (1988), LaguerreL, Wolfram Language function, https://reference.wolfram.com/language/ref/LaguerreL.html (updated 2022).

Text

Wolfram Research (1988), LaguerreL, Wolfram Language function, https://reference.wolfram.com/language/ref/LaguerreL.html (updated 2022).

CMS

Wolfram Language. 1988. "LaguerreL." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/LaguerreL.html.

APA

Wolfram Language. (1988). LaguerreL. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LaguerreL.html

BibTeX

@misc{reference.wolfram_2025_laguerrel, author="Wolfram Research", title="{LaguerreL}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/LaguerreL.html}", note=[Accessed: 15-February-2026]}

BibLaTeX

@online{reference.wolfram_2025_laguerrel, organization={Wolfram Research}, title={LaguerreL}, year={2022}, url={https://reference.wolfram.com/language/ref/LaguerreL.html}, note=[Accessed: 15-February-2026]}

Top

[8]ページ先頭

©2009-2026 Movatter.jp