

LaguerreL
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- Explicit polynomials are given when possible.
.- The Laguerre polynomials are orthogonal with weight function
. - They satisfy the differential equation
. - For certain special arguments,LaguerreL automatically evaluates to exact values.
- LaguerreL can be evaluated to arbitrary numerical precision.
- LaguerreL automatically threads over lists.
- LaguerreL[n,x] is an entire function ofx with no branch cut discontinuities.
- LaguerreL can be used withInterval andCenteredInterval objects.»
Examples
open allclose allBasic Examples (6)
Compute the 5
Laguerre polynomial:
Compute the associated Laguerre polynomial
:
Plot over a subset of the reals:
Plot over a subset of the complexes:
Series expansion at the origin:
Series expansion atInfinity:
Scope (41)
Numerical Evaluation (6)
The precision of the output tracks the precision of the input:
Evaluate efficiently at high precision:
Compute worst-case guaranteed intervals usingInterval andCenteredInterval objects:
Or compute average-case statistical intervals usingAround:
Compute the elementwise values of an array:
Or compute the matrixLaguerreL function usingMatrixFunction:
Specific Values (5)
Visualization (3)
Plot theLaguerreL polynomial for various orders:
Function Properties (13)
The primary Laguerre function is defined for all real and complex values:
The associated Laguerre function
has restrictions on
and
, but not
:
achieves all real and complex values:
LaguerreL has the mirror property
:
LaguerreL threads elementwise over lists:
is an analytic function of
and
:
is not analytic, but it is meromorphic:
is neither non-decreasing nor non-increasing:
Laguerre polynomials are not injective for values other than 1:
LaguerreL is neither non-negative nor non-positive:
has no singularities or discontinuities in
:
TraditionalForm formatting:
Differentiation (3)
Integration (3)
Series Expansions (5)
Find the Taylor expansion usingSeries:
Plots of the first three approximations around
:
General term in the series expansion usingSeriesCoefficient:
Find the series expansion atInfinity:
Generalizations & Extensions (1)
LaguerreL can be applied to a power series:
Applications (6)
Solve the Laguerre differential equation:
Generalized Fourier series for functions defined on
:
Radial wave-function of the hydrogen atom:
Compute the energy eigenvalue from the differential equation:
The energy is independent of the orbital quantum numberl:
The number of derangement anagrams for a word with character counts
:
Count the number of derangements for the word Mathematica:
Compare the value of theMarcumQ function for large arguments to its asymptotic formula:
Construct an approximation using the central limit theorem:
Ann-point Gauss–Laguerre quadrature rule is based on the roots of then
-order Laguerre polynomial. Compute the nodes and weights of ann-point Gauss–Laguerre quadrature rule for a given value of
:
Use then-point Gaussian quadrature rule to numerically evaluate an integral:
Compare the result of the Gauss–Laguerre quadrature with the result fromNIntegrate:
Properties & Relations (7)
Get the list of coefficients in a Laguerre polynomial:
UseFunctionExpand to expandLaguerreL functions into simpler functions:
LaguerreL can be represented as aDifferentialRoot:
LaguerreL can be represented in terms ofMeijerG:
LaguerreL can be represented as aDifferenceRoot:
General term in the series expansion ofLaguerreL:
The generating function forLaguerreL:
Tech Notes
History
Introduced in 1988(1.0) |Updated in 2021(13.0)▪2022(13.1)
Text
Wolfram Research (1988), LaguerreL, Wolfram Language function, https://reference.wolfram.com/language/ref/LaguerreL.html (updated 2022).
CMS
Wolfram Language. 1988. "LaguerreL." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/LaguerreL.html.
APA
Wolfram Language. (1988). LaguerreL. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LaguerreL.html
BibTeX
@misc{reference.wolfram_2025_laguerrel, author="Wolfram Research", title="{LaguerreL}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/LaguerreL.html}", note=[Accessed: 15-February-2026]}
BibLaTeX
@online{reference.wolfram_2025_laguerrel, organization={Wolfram Research}, title={LaguerreL}, year={2022}, url={https://reference.wolfram.com/language/ref/LaguerreL.html}, note=[Accessed: 15-February-2026]}
[8]ページ先頭
![TemplateBox[{n, x}, LaguerreL] TemplateBox[{n, x}, LaguerreL]](/image.pl?url=http%3a%2f%2freference.wolfram.com%2fmathematica%2fref%2fFiles%2fLaguerreL.en%2f39.png&f=jpg&w=240)
![TemplateBox[{n, a, x}, LaguerreL3] TemplateBox[{n, a, x}, LaguerreL3]](/image.pl?url=http%3a%2f%2freference.wolfram.com%2fmathematica%2fref%2fFiles%2fLaguerreL.en%2f40.png&f=jpg&w=240)
![TemplateBox[{n, x}, LaguerreL] TemplateBox[{n, x}, LaguerreL]](/image.pl?url=http%3a%2f%2freference.wolfram.com%2fmathematica%2fref%2fFiles%2fLaguerreL.en%2f1.png&f=jpg&w=240)
![TemplateBox[{n, a, x}, LaguerreL3] TemplateBox[{n, a, x}, LaguerreL3]](/image.pl?url=http%3a%2f%2freference.wolfram.com%2fmathematica%2fref%2fFiles%2fLaguerreL.en%2f2.png&f=jpg&w=240)
 TemplateBox[{10}, LucasL](z)](/image.pl?url=http%3a%2f%2freference.wolfram.com%2fmathematica%2fref%2fFiles%2fLaguerreL.en%2f8.png&f=jpg&w=240)
 TemplateBox[{10}, LucasL](z)](/image.pl?url=http%3a%2f%2freference.wolfram.com%2fmathematica%2fref%2fFiles%2fLaguerreL.en%2f9.png&f=jpg&w=240)
![TemplateBox[{1, n, x}, LaguerreL3] TemplateBox[{1, n, x}, LaguerreL3]](/image.pl?url=http%3a%2f%2freference.wolfram.com%2fmathematica%2fref%2fFiles%2fLaguerreL.en%2f15.png&f=jpg&w=240)
![TemplateBox[{2, x}, LaguerreL] TemplateBox[{2, x}, LaguerreL]](/image.pl?url=http%3a%2f%2freference.wolfram.com%2fmathematica%2fref%2fFiles%2fLaguerreL.en%2f16.png&f=jpg&w=240)
![TemplateBox[{1, a, x}, LaguerreL3] TemplateBox[{1, a, x}, LaguerreL3]](/image.pl?url=http%3a%2f%2freference.wolfram.com%2fmathematica%2fref%2fFiles%2fLaguerreL.en%2f22.png&f=jpg&w=240)
![TemplateBox[{n, a, x}, LaguerreL3] TemplateBox[{n, a, x}, LaguerreL3]](/image.pl?url=http%3a%2f%2freference.wolfram.com%2fmathematica%2fref%2fFiles%2fLaguerreL.en%2f24.png&f=jpg&w=240)

![TemplateBox[{2, a, x}, LaguerreL3] TemplateBox[{2, a, x}, LaguerreL3]](/image.pl?url=http%3a%2f%2freference.wolfram.com%2fmathematica%2fref%2fFiles%2fLaguerreL.en%2f28.png&f=jpg&w=240)

derivative with respect to