Movatterモバイル変換


[0]ホーム

URL:


WOLFRAM

Wolfram Language & System Documentation Center
NevilleThetaC

NevilleThetaC[z,m]

gives the Neville theta function.

Details
Details and OptionsDetails and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Function Properties  
Differentiation  
Series Expansions  
Generalizations & Extensions  
Applications  
Properties & Relations  
Possible Issues  
See Also
Tech Notes
Related Guides
Related Links
History
Cite this Page

NevilleThetaC

NevilleThetaC[z,m]

gives the Neville theta function.

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • NevilleThetaC[z,m] is a meromorphic function ofz and has a complicated branch cut structure in the complexm plane.
  • For certain special arguments,NevilleThetaC automatically evaluates to exact values.
  • NevilleThetaC can be evaluated to arbitrary numerical precision.
  • NevilleThetaC automatically threads over lists.

Examples

open allclose all

Basic Examples  (4)

Evaluate numerically:

Plot over a subset of the reals::

Plot over a subset of the complexes:

Series expansion at the origin:

Scope  (29)

Numerical Evaluation  (6)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate efficiently at high precision:

Compute average-case statistical intervals usingAround:

Compute the elementwise values of an array:

Or compute the matrixNevilleThetaC function usingMatrixFunction:

Specific Values  (4)

Values at corners of the fundamental cell:

NevilleThetaC for special values of elliptic parameter:

Find the first positive maximum ofNevilleThetaC[x,1/4]:

DifferentNevilleThetaC types give different symbolic forms:

Visualization  (3)

Plot theNevilleThetaC functions for various values of the parameter:

PlotNevilleThetaC as a function of its parameter:

Plot the real part ofTemplateBox[{z, {1, /, 2}}, NevilleThetaC]:

Plot the imaginary part ofTemplateBox[{z, {1, /, 2}}, NevilleThetaC]:

Function Properties  (12)

The real domain ofNevilleThetaC:

The complex domain ofNevilleThetaC:

Approximate function range ofTemplateBox[{x, 0}, NevilleThetaC]:

Approximate function range ofTemplateBox[{x, 1}, NevilleThetaC]:

NevilleThetaC is an even function:

NevilleThetaC threads elementwise over lists:

TemplateBox[{x, m}, NevilleThetaC] is an analytic function of for:

TemplateBox[{x, {1, /, 3}}, NevilleThetaC] is neither non-decreasing nor non-increasing:

TemplateBox[{x, {1, /, 3}}, NevilleThetaC] is not injective:

TemplateBox[{x, {1, /, 3}}, NevilleThetaC] is not surjective:

TemplateBox[{x, m}, NevilleThetaC] is neither non-negative nor non-positive, except for:

TemplateBox[{x, m}, NevilleThetaC] has no singularities or discontinuities except for:

TemplateBox[{x, m}, NevilleThetaC] is affine only for and otherwise it is neither convex nor concave:

FormatNevilleThetaC inTraditionalForm:

Differentiation  (2)

The first-order derivatives:

Higher-order derivatives:

Plot the higher-order derivatives:

Series Expansions  (2)

Find the Taylor expansion usingSeries:

Plots of the first three approximations around:

The Taylor expansion for small elliptic parameterm:

The Taylor expansion around:

Generalizations & Extensions  (1)

NevilleThetaC can be applied to a power series:

Applications  (4)

Plot over the plane:

Current flow in a rectangular conducting sheet with voltage applied at a pair of opposite corners:

Plot the flow lines:

Parametrize a lemniscate by arc length:

Show the classical and arc length parametrizations:

Uniformization of a Fermat cubic:

Plot the curve for real:

Verify that points on the curve satisfy:

Properties & Relations  (3)

Basic simplifications are automatically carried out:

All Neville theta functions are a multiple of shiftedNevilleThetaC:

Numerically find a root of a transcendental equation:

Possible Issues  (1)

Machine-precision input is insufficient to give a correct answer:

See Also

NevilleThetaS NevilleThetaD NevilleThetaN EllipticTheta JacobiCN

Tech Notes

Related Guides

Related Links

History

Introduced in 1996(3.0)

Wolfram Research (1996), NevilleThetaC, Wolfram Language function, https://reference.wolfram.com/language/ref/NevilleThetaC.html.

Text

Wolfram Research (1996), NevilleThetaC, Wolfram Language function, https://reference.wolfram.com/language/ref/NevilleThetaC.html.

CMS

Wolfram Language. 1996. "NevilleThetaC." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/NevilleThetaC.html.

APA

Wolfram Language. (1996). NevilleThetaC. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/NevilleThetaC.html

BibTeX

@misc{reference.wolfram_2025_nevillethetac, author="Wolfram Research", title="{NevilleThetaC}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/NevilleThetaC.html}", note=[Accessed: 29-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_nevillethetac, organization={Wolfram Research}, title={NevilleThetaC}, year={1996}, url={https://reference.wolfram.com/language/ref/NevilleThetaC.html}, note=[Accessed: 29-November-2025]}

Top

[8]ページ先頭

©2009-2025 Movatter.jp