NevilleThetaC[z,m]
gives the Neville theta function
.


NevilleThetaC
NevilleThetaC[z,m]
gives the Neville theta function
.
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.

- NevilleThetaC[z,m] is a meromorphic function of
and has a complicated branch cut structure in the complex
plane. - For certain special arguments,NevilleThetaC automatically evaluates to exact values.
- NevilleThetaC can be evaluated to arbitrary numerical precision.
- NevilleThetaC automatically threads over lists.
Examples
open allclose allBasic Examples (4)
Scope (29)
Numerical Evaluation (6)
The precision of the output tracks the precision of the input:
Evaluate efficiently at high precision:
Compute average-case statistical intervals usingAround:
Compute the elementwise values of an array:
Or compute the matrixNevilleThetaC function usingMatrixFunction:
Specific Values (4)
Values at corners of the fundamental cell:
NevilleThetaC for special values of elliptic parameter:
Find the first positive maximum ofNevilleThetaC[x,1/4]:
DifferentNevilleThetaC types give different symbolic forms:
Visualization (3)
Plot theNevilleThetaC functions for various values of the parameter:
PlotNevilleThetaC as a function of its parameter
:
Function Properties (12)
The real domain ofNevilleThetaC:
The complex domain ofNevilleThetaC:
Approximate function range of
:
Approximate function range of
:
NevilleThetaC is an even function:
NevilleThetaC threads elementwise over lists:
is an analytic function of
for
:
is neither non-decreasing nor non-increasing:
is neither non-negative nor non-positive, except for
:
has no singularities or discontinuities except for
:
is affine only for
and otherwise it is neither convex nor concave:
FormatNevilleThetaC inTraditionalForm:
Differentiation (2)
Series Expansions (2)
Find the Taylor expansion usingSeries:
Plots of the first three approximations around
:
Generalizations & Extensions (1)
NevilleThetaC can be applied to a power series:
Applications (4)
Properties & Relations (3)
Basic simplifications are automatically carried out:
All Neville theta functions are a multiple of shiftedNevilleThetaC:
Tech Notes
Related Guides
Related Links
History
Introduced in 1996(3.0)
Text
Wolfram Research (1996), NevilleThetaC, Wolfram Language function, https://reference.wolfram.com/language/ref/NevilleThetaC.html.
CMS
Wolfram Language. 1996. "NevilleThetaC." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/NevilleThetaC.html.
APA
Wolfram Language. (1996). NevilleThetaC. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/NevilleThetaC.html
BibTeX
@misc{reference.wolfram_2025_nevillethetac, author="Wolfram Research", title="{NevilleThetaC}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/NevilleThetaC.html}", note=[Accessed: 29-November-2025]}
BibLaTeX
@online{reference.wolfram_2025_nevillethetac, organization={Wolfram Research}, title={NevilleThetaC}, year={1996}, url={https://reference.wolfram.com/language/ref/NevilleThetaC.html}, note=[Accessed: 29-November-2025]}
[8]ページ先頭
![TemplateBox[{z, {1, /, 2}}, NevilleThetaC] TemplateBox[{z, {1, /, 2}}, NevilleThetaC]](/image.pl?url=http%3a%2f%2freference.wolfram.com%2flanguage%2fref%2fFiles%2fNevilleThetaC.en%2f6.png&f=jpg&w=240)
![TemplateBox[{z, {1, /, 2}}, NevilleThetaC] TemplateBox[{z, {1, /, 2}}, NevilleThetaC]](/image.pl?url=http%3a%2f%2freference.wolfram.com%2flanguage%2fref%2fFiles%2fNevilleThetaC.en%2f7.png&f=jpg&w=240)
![TemplateBox[{x, {1, /, 3}}, NevilleThetaC] TemplateBox[{x, {1, /, 3}}, NevilleThetaC]](/image.pl?url=http%3a%2f%2freference.wolfram.com%2flanguage%2fref%2fFiles%2fNevilleThetaC.en%2f14.png&f=jpg&w=240)
![TemplateBox[{x, {1, /, 3}}, NevilleThetaC] TemplateBox[{x, {1, /, 3}}, NevilleThetaC]](/image.pl?url=http%3a%2f%2freference.wolfram.com%2flanguage%2fref%2fFiles%2fNevilleThetaC.en%2f15.png&f=jpg&w=240)




