Movatterモバイル変換


[0]ホーム

URL:


WOLFRAM

Wolfram Language & System Documentation Center
Complexes

Complexes

represents the domain of complex numbers, as inxComplexes.

Details
Details and OptionsDetails and Options
Examples  
Basic Examples  
Scope  
Properties & Relations  
See Also
Tech Notes
Related Guides
History
Cite this Page

Complexes

Complexes

represents the domain of complex numbers, as inxComplexes.

Details

  • xComplexes evaluates immediately only ifx is a numeric quantity.
  • Simplify[exprComplexes] can be used to try to determine whether an expression corresponds to a complex number.
  • The domain of real numbers is taken to be a subset of the domain of complex numbers.
  • Complexes is output inStandardForm orTraditionalForm asTemplateBox[{}, Complexes]. This typeset form can be input usingcomps.

Examples

open allclose all

Basic Examples  (3)

is a complex number:

Exponential of a complex number is a complex number:

Find complex numbers that make an inequality well defined andTrue:

Scope  (2)

Specify that all variables should be considered complex, even if they appear in inequalities:

By default,Reduce considers all variables that appear in inequalities to be real:

For every real numbery there exists a complex number whose square is real and less thany:

By default,Resolve considers all variables that appear in inequalities to be real:

TraditionalForm of formatting:

Properties & Relations  (2)

Complexes containsReals,Algebraics,Rationals,Integers, andPrimes:

Infinite quantities are not considered part of theComplexes:

See Also

Element Simplify NumberQ NumericQ Complex Reals

Tech Notes

Related Guides

History

Introduced in 1999(4.0) |Updated in 2017(11.2)

Wolfram Research (1999), Complexes, Wolfram Language function, https://reference.wolfram.com/language/ref/Complexes.html (updated 2017).

Text

Wolfram Research (1999), Complexes, Wolfram Language function, https://reference.wolfram.com/language/ref/Complexes.html (updated 2017).

CMS

Wolfram Language. 1999. "Complexes." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2017. https://reference.wolfram.com/language/ref/Complexes.html.

APA

Wolfram Language. (1999). Complexes. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Complexes.html

BibTeX

@misc{reference.wolfram_2025_complexes, author="Wolfram Research", title="{Complexes}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/Complexes.html}", note=[Accessed: 29-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_complexes, organization={Wolfram Research}, title={Complexes}, year={2017}, url={https://reference.wolfram.com/language/ref/Complexes.html}, note=[Accessed: 29-November-2025]}

Top

[8]ページ先頭

©2009-2025 Movatter.jp