Movatterモバイル変換


[0]ホーム

URL:


WOLFRAM

Wolfram Language & System Documentation Center
BooleanCountingFunction

BooleanCountingFunction[kmax,n]

represents a Boolean function ofn variables that givesTrue if at mostkmax variables areTrue.

BooleanCountingFunction[{k},n]

represents a function ofn variables that givesTrue if exactlyk variables areTrue.

BooleanCountingFunction[{kmin,kmax},n]

represents a function that givesTrue if betweenkmin andkmax variables areTrue.

BooleanCountingFunction[{{k1,k2,}},n]

represents a function that givesTrue if exactlyki variables areTrue.

BooleanCountingFunction[spec,{a1,a2,}]

gives the Boolean expression in variablesai corresponding to the Boolean counting function specified byspec.

BooleanCountingFunction[spec,{a1,a2,},form]

gives the Boolean expression in the form specified byform.

Details
Details and OptionsDetails and Options
Examples  
Basic Examples  
Scope  
Applications  
Properties & Relations  
Neat Examples  
See Also
Related Guides
History
Cite this Page

BooleanCountingFunction

BooleanCountingFunction[kmax,n]

represents a Boolean function ofn variables that givesTrue if at mostkmax variables areTrue.

BooleanCountingFunction[{k},n]

represents a function ofn variables that givesTrue if exactlyk variables areTrue.

BooleanCountingFunction[{kmin,kmax},n]

represents a function that givesTrue if betweenkmin andkmax variables areTrue.

BooleanCountingFunction[{{k1,k2,}},n]

represents a function that givesTrue if exactlyki variables areTrue.

BooleanCountingFunction[spec,{a1,a2,}]

gives the Boolean expression in variablesai corresponding to the Boolean counting function specified byspec.

BooleanCountingFunction[spec,{a1,a2,},form]

gives the Boolean expression in the form specified byform.

Details

Examples

open allclose all

Basic Examples  (1)

At most two conditions are true:

Convert to a disjunctive normal form:

Scope  (6)

Specify thatf is true when at most2 arguments are true:

Exactly2 arguments are true:

Between2 and3 arguments are true:

1,3, or5 arguments are true:

Specify thatf is true when exactly1,4, or5 arguments are true:

BooleanCountingFunction is by default preserved in function form:

UseBooleanConvert to convert to other forms:

BooleanCountingFunction is automatically converted when given an explicit list of variables:

The expanded forms can be large when the number of variables grows:

The performance gain in evaluating the function form can be substantial:

Constant arguments are reduced:

Extreme cases are automatically converted to formulas:

Applications  (4)

Create new primitives that are true when at most, at least, or exactlyk arguments are true:

Create a number of disk regions along the unit circle:

Show the newly combined regions:

Integrate over these regions:

Define a Boolean function that is true when the number of true arguments isk modulom:

Whenk=0 andm=2, you getXnor:

Whenk=1 andm=2, you getXor:

For other values ofk andm, you get new functionality:

The 2D truth table:

Define a Boolean function that sorts a list of truth values:

The resulting list is always in sorted order:

Find the mean time to failure for a system that needs two out of three components to work:

Properties & Relations  (6)

BooleanCountingFunction is symmetric in its arguments:

Logical combinations ofBooleanCountingFunction correspond to set operations on indices:

The basic specification can equivalently be specified usingRange:

Many primitives can be expressed in terms ofBooleanCountingFunction:

And:

Or:

Nand:

Nor:

Xor:

Xnor:

Equivalent:

Majority:

The size of the truth set forBooleanCountingFunction is the length ofSubsets:

The size of the truth set forBooleanCountingFunction can be given by a combinatorial sum:

Neat Examples  (1)

BooleanCountingFunction for when exactlyi variables are true has disjoint truth sets:

See Also

Majority Xor Xnor Equivalent BooleanFunction BooleanConsecutiveFunction BooleanConvert SymmetricPolynomial

Related Guides

History

Introduced in 2008(7.0)

Wolfram Research (2008), BooleanCountingFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/BooleanCountingFunction.html.

Text

Wolfram Research (2008), BooleanCountingFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/BooleanCountingFunction.html.

CMS

Wolfram Language. 2008. "BooleanCountingFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BooleanCountingFunction.html.

APA

Wolfram Language. (2008). BooleanCountingFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BooleanCountingFunction.html

BibTeX

@misc{reference.wolfram_2025_booleancountingfunction, author="Wolfram Research", title="{BooleanCountingFunction}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/BooleanCountingFunction.html}", note=[Accessed: 29-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_booleancountingfunction, organization={Wolfram Research}, title={BooleanCountingFunction}, year={2008}, url={https://reference.wolfram.com/language/ref/BooleanCountingFunction.html}, note=[Accessed: 29-November-2025]}

Top

[8]ページ先頭

©2009-2025 Movatter.jp