Movatterモバイル変換


[0]ホーム

URL:


Learning Multiple Markov Chains via Adaptive Allocation

Part ofAdvances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedbackBibtexMetaReviewMetadataPaperReviewsSupplemental

Authors

Mohammad Sadegh Talebi, Odalric-Ambrym Maillard

Abstract

We study the problem of learning the transition matrices of a set of Markov chains from a single stream of observations on each chain. We assume that the Markov chains are ergodic but otherwise unknown. The learner can sample Markov chains sequentially to observe their states. The goal of the learner is to sequentially select various chains to learn transition matrices uniformly well with respect to some loss function. We introduce a notion of loss that naturally extends the squared loss for learning distributions to the case of Markov chains, and further characterize the notion of being \emph{uniformly good} in all problem instances. We present a novel learning algorithm that efficiently balances \emph{exploration} and \emph{exploitation} intrinsic to this problem, without any prior knowledge of the chains. We provide finite-sample PAC-type guarantees on the performance of the algorithm. Further, we show that our algorithm asymptotically attains an optimal loss.


Name Change Policy

Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.

Use the "Report an Issue" link to request a name change.


[8]ページ先頭

©2009-2025 Movatter.jp