Movatterモバイル変換


[0]ホーム

URL:


Structured Graph Learning Via Laplacian Spectral Constraints

Part ofAdvances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedbackBibtexMetaReviewMetadataPaperReviewsSupplemental

Authors

Sandeep Kumar, Jiaxi Ying, Jose Vinicius de Miranda Cardoso, Daniel Palomar

Abstract

Learning a graph with a specific structure is essential for interpretability and identification of the relationships among data. But structured graph learning from observed samples is an NP-hard combinatorial problem. In this paper, we first show, for a set of important graph families it is possible to convert the combinatorial constraints of structure into eigenvalue constraints of the graph Laplacian matrix. Then we introduce a unified graph learning framework lying at the integration of the spectral properties of the Laplacian matrix with Gaussian graphical modeling, which is capable of learning structures of a large class of graph families. The proposed algorithms are provably convergent and practically amenable for big-data specific tasks. Extensive numerical experiments with both synthetic and real datasets demonstrate the effectiveness of the proposed methods. An R package containing codes for all the experimental results is submitted as a supplementary file.


Name Change Policy

Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.

Use the "Report an Issue" link to request a name change.


[8]ページ先頭

©2009-2025 Movatter.jp