Movatterモバイル変換


[0]ホーム

URL:


Program Synthesis and Semantic Parsing with Learned Code Idioms

Part ofAdvances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedbackBibtexMetaReviewMetadataPaperReviewsSupplemental

Authors

Eui Chul Shin, Miltiadis Allamanis, Marc Brockschmidt, Alex Polozov

Abstract

Program synthesis of general-purpose source code from natural language specifications is challenging due to the need to reason about high-level patterns in the target program and low-level implementation details at the same time. In this work, we present Patois, a system that allows a neural program synthesizer to explicitly interleave high-level and low-level reasoning at every generation step. It accomplishes this by automatically mining common code idioms from a given corpus, incorporating them into the underlying language for neural synthesis, and training a tree-based neural synthesizer to use these idioms during code generation. We evaluate Patois on two complex semantic parsing datasets and show that using learned code idioms improves the synthesizer's accuracy.


Name Change Policy

Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.

Use the "Report an Issue" link to request a name change.


[8]ページ先頭

©2009-2025 Movatter.jp