Movatterモバイル変換


[0]ホーム

URL:


Statistical-Computational Tradeoff in Single Index Models

Part ofAdvances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedbackBibtexMetaReviewMetadataPaperReviewsSupplemental

Authors

Lingxiao Wang, Zhuoran Yang, Zhaoran Wang

Abstract

We study the statistical-computational tradeoffs in a high dimensional single index model $Y=f(X^\top\beta^*) +\epsilon$, where $f$ is unknown, $X$ is a Gaussian vector and $\beta^*$ is $s$-sparse with unit norm. When $\cov(Y,X^\top\beta^*)\neq 0$, \cite{plan2016generalized} shows that the direction and support of $\beta^*$ can be recovered using a generalized version of Lasso. In this paper, we investigate the case when this critical assumption fails to hold, where the problem becomes considerably harder. Using the statistical query model to characterize the computational cost of an algorithm, we show that when $\cov(Y,X^\top\beta^*)=0$ and $\cov(Y,(X^\top\beta^*)^2)>0$, no computationally tractable algorithms can achieve the information-theoretic limit of the minimax risk. This implies that one must pay an extra computational cost for the nonlinearity involved in the model.


Name Change Policy

Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.

Use the "Report an Issue" link to request a name change.


[8]ページ先頭

©2009-2025 Movatter.jp