Part ofAdvances in Neural Information Processing Systems 32 (NeurIPS 2019)
Debarghya Ghoshdastidar, Michaël Perrot, Ulrike von Luxburg
We address the classical problem of hierarchical clustering, but in a framework where one does not have access to a representation of the objects or their pairwise similarities. Instead, we assume that only a set of comparisons between objects is available, that is, statements of the form ``objects i and j are more similar than objects k and l.'' Such a scenario is commonly encountered in crowdsourcing applications. The focus of this work is to develop comparison-based hierarchical clustering algorithms that do not rely on the principles of ordinal embedding. We show that single and complete linkage are inherently comparison-based and we develop variants of average linkage. We provide statistical guarantees for the different methods under a planted hierarchical partition model. We also empirically demonstrate the performance of the proposed approaches on several datasets.
Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.
Use the "Report an Issue" link to request a name change.