Movatterモバイル変換


[0]ホーム

URL:


Spectral Modification of Graphs for Improved Spectral Clustering

Part ofAdvances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedbackBibtexMetaReviewMetadataPaperReviewsSupplemental

Authors

Ioannis Koutis, Huong Le

Abstract

Spectral clustering algorithms provide approximate solutions to hard optimization problems that formulate graph partitioning in terms of the graph conductance. It is well understood that the quality of these approximate solutions is negatively affected by a possibly significant gap between the conductance and the second eigenvalue of the graph. In this paper we show that for \textbf{any} graph $G$, there exists a `spectral maximizer' graph $H$ which is cut-similar to $G$, but has eigenvalues that are near the theoretical limit implied by the cut structure of $G$. Applying then spectral clustering on $H$ has the potential to produce improved cuts that also exist in $G$ due to the cut similarity. This leads to the second contribution of this work: we describe a practical spectral modification algorithm that raises the eigenvalues of the input graph, while preserving its cuts. Combined with spectral clustering on the modified graph, this yields demonstrably improved cuts.


Name Change Policy

Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.

Use the "Report an Issue" link to request a name change.


[8]ページ先頭

©2009-2025 Movatter.jp