Movatterモバイル変換


[0]ホーム

URL:


Gradient Information for Representation and Modeling

Part ofAdvances in Neural Information Processing Systems 32 (NeurIPS 2019)

AuthorFeedbackBibtexMetaReviewMetadataPaperReviewsSupplemental

Authors

Jie Ding, Robert Calderbank, Vahid Tarokh

Abstract

Motivated by Fisher divergence, in this paper we present a new set of information quantities which we refer to as gradient information. These measures serve as surrogates for classical information measures such as those based on logarithmic loss, Kullback-Leibler divergence, directed Shannon information, etc. in many data-processing scenarios of interest, and often provide significant computational advantage, improved stability and robustness. As an example, we apply these measures to the Chow-Liu tree algorithm, and demonstrate remarkable performance and significant computational reduction using both synthetic and real data.


Name Change Policy

Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.

Use the "Report an Issue" link to request a name change.


[8]ページ先頭

©2009-2025 Movatter.jp