Movatterモバイル変換


[0]ホーム

URL:


Parallelizing MCMC with Random Partition Trees

Part ofAdvances in Neural Information Processing Systems 28 (NIPS 2015)

BibtexMetadataPaperReviewsSupplemental

Authors

Xiangyu Wang, Fangjian Guo, Katherine A. Heller, David B Dunson

Abstract

The modern scale of data has brought new challenges to Bayesian inference. In particular, conventional MCMC algorithms are computationally very expensive for large data sets. A promising approach to solve this problem is embarrassingly parallel MCMC (EP-MCMC), which first partitions the data into multiple subsets and runs independent sampling algorithms on each subset. The subset posterior draws are then aggregated via some combining rules to obtain the final approximation. Existing EP-MCMC algorithms are limited by approximation accuracy and difficulty in resampling. In this article, we propose a new EP-MCMC algorithm PART that solves these problems. The new algorithm applies random partition trees to combine the subset posterior draws, which is distribution-free, easy to resample from and can adapt to multiple scales. We provide theoretical justification and extensive experiments illustrating empirical performance.


Name Change Policy

Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.

Use the "Report an Issue" link to request a name change.


[8]ページ先頭

©2009-2025 Movatter.jp