Part ofAdvances in Neural Information Processing Systems 28 (NIPS 2015)
Behnam Neyshabur, Ruslan Salakhutdinov, Nati Srebro
We revisit the choice of SGD for training deep neural networks by reconsidering the appropriate geometry in which to optimize the weights. We argue for a geometry invariant to rescaling of weights that does not affect the output of the network, and suggest Path-SGD, which is an approximate steepest descent method with respect to a path-wise regularizer related to max-norm regularization. Path-SGD is easy and efficient to implement and leads to empirical gains over SGD and AdaGrad.
Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.
Use the "Report an Issue" link to request a name change.