Part ofAdvances in Neural Information Processing Systems 27 (NIPS 2014)
Li Xu, Jimmy SJ. Ren, Ce Liu, Jiaya Jia
Many fundamental image-related problems involve deconvolution operators. Real blur degradation seldom complies with an deal linear convolution model due to camera noise, saturation, image compression, to name a few. Instead of perfectly modeling outliers, which is rather challenging from a generative model perspective, we develop a deep convolutional neural network to capture the characteristics of degradation. We note directly applying existing deep neural networks does not produce reasonable results. Our solution is to establish the connection between traditional optimization-based schemes and a neural network architecture where a novel, separable structure is introduced as a reliable support for robust deconvolution against artifacts. Our network contains two submodules, both trained in a supervised manner with proper initialization. They yield decent performance on non-blind image deconvolution compared to previous generative-model based methods.
Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.
Use the "Report an Issue" link to request a name change.