Part ofAdvances in Neural Information Processing Systems 27 (NIPS 2014)
Ramya Korlakai Vinayak, Samet Oymak, Babak Hassibi
We consider the problem of finding clusters in an unweighted graph, when the graph is partially observed. We analyze two programs, one which works for dense graphs and one which works for both sparse and dense graphs, but requires some a priori knowledge of the total cluster size, that are based on the convex optimization approach for low-rank matrix recovery using nuclear norm minimization. For the commonly used Stochastic Block Model, we obtain \emph{explicit} bounds on the parameters of the problem (size and sparsity of clusters, the amount of observed data) and the regularization parameter characterize the success and failure of the programs. We corroborate our theoretical findings through extensive simulations. We also run our algorithm on a real data set obtained from crowdsourcing an image classification task on the Amazon Mechanical Turk, and observe significant performance improvement over traditional methods such as k-means.
Requests for name changes in the electronic proceedings will be accepted with no questions asked. However name changes may cause bibliographic tracking issues. Authors are asked to consider this carefully and discuss it with their co-authors prior to requesting a name change in the electronic proceedings.
Use the "Report an Issue" link to request a name change.